ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb tunneling for fusion reactions in dense matter: Path integral Monte Carlo versus mean field

50   0   0.0 ( 0 )
 نشر من قبل Andrey Chugunov Mr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.I. Chugunov




اسأل ChatGPT حول البحث

We compare Path Integral Monte Carlo calculations by Militzer and Pollock (Phys. Rev. B 71, 134303, 2005) of Coulomb tunneling in nuclear reactions in dense matter to semiclassical calculations assuming WKB Coulomb barrier penetration through the radial mean-field potential. We find a very good agreement of two approaches at temperatures higher than ~1/5 of the ion plasma temperature. We obtain a simple parameterization of the mean field potential and of the respective reaction rates. We analyze Gamow-peak energies of reacting ions in various reaction regimes and discuss theoretical uncertainties of nuclear reaction rates taking carbon burning in dense stellar matter as an example.

قيم البحث

اقرأ أيضاً

38 - D.G. Yakovlev 2006
We analyze thermonuclear and pycnonuclear fusion reactions in dense matter containing atomic nuclei of different types. We extend a phenomenological expression for the reaction rate, proposed recently by Gasques et al. (2005) for the one-component pl asma of nuclei, to the multi-component plasma. The expression contains several fit parameters which we adjust to reproduce the best microscopic calculations available in the literature. Furthermore, we show that pycnonuclear burning is drastically affected by an (unknown) structure of the multi-component matter (a regular lattice, a uniform mix, etc.). We apply the results to study nuclear burning in a carbon_12-oxygen_16 mixture. In this context we present new calculations of the astrophysical S-factors for carbon-oxygen and oxygen-oxygen fusion reactions. We show that the presence of a CO lattice can strongly suppress carbon ignition in white dwarf cores and neutron star crusts at densities > 3e9 g cm^{-3} and temperatures T<1e8 K.
84 - Mamikon Gulian , Haobo Yang , 2017
Fractional derivatives are nonlocal differential operators of real order that often appear in models of anomalous diffusion and a variety of nonlocal phenomena. Recently, a version of the Schrodinger Equation containing a fractional Laplacian has bee n proposed. In this work, we develop a Fractional Path Integral Monte Carlo algorithm that can be used to study the finite temperature behavior of the time-independent Fractional Schrodinger Equation for a variety of potentials. In so doing, we derive an analytic form for the finite temperature fractional free particle density matrix and demonstrate how it can be sampled to acquire new sets of particle positions. We employ this algorithm to simulate both the free particle and $^{4}$He (Aziz) Hamiltonians. We find that the fractional Laplacian strongly encourages particle delocalization, even in the presence of interactions, suggesting that fractional Hamiltonians may manifest atypical forms of condensation. Our work opens the door to studying fractional Hamiltonians with arbitrarily complex potentials that escape analytical solutions.
Quantum Monte Carlo belongs to the most accurate simulation techniques for quantum many-particle systems. However, for fermions, these simulations are hampered by the sign problem that prohibits simulations in the regime of strong degeneracy. The sit uation changed with the development of configuration path integral Monte Carlo (CPIMC) by Schoof textit{et al.} [T. Schoof textit{et al.}, Contrib. Plasma Phys. textbf{51}, 687 (2011)] that allowed for the first textit{ab initio} simulations for dense quantum plasmas. CPIMC also has a sign problem that occurs when the density is lowered, i.e. in a parameter range that is complementary to traditional QMC formulated in coordinate space. Thus, CPIMC simulations for the warm dense electron gas are limited to small values of the Brueckner parameter -- the ratio of the interparticle distance to the Bohr radius -- $r_s=bar{r}/a_B lesssim 1$. In order to reach the regime of stronger coupling (lower density) with CPIMC, here we investigate additional restrictions on the Monte Carlo procedure. In particular, we introduce two differe
87 - K. Sakkos , J. Casulleras , 2009
High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrarily to the Takahashi-Imada action, which is accurate to fourth order only for the trace, the Chin action is fully fourth order, wit h the additional advantage that the leading fourth and sixth order error coefficients are finely tunable. By optimizing two free parameters entering in the new action we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced, and the efficiency improvement with respect to the primitive approximation is approximately a factor of ten. The Chin action is tested in a one-dimensional harmonic oscillator, a H$_2$ drop, and bulk liquid $^4$He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid $^4$He.
Path integral Monte Carlo approach is used to study the coupled quantum dynamics of the electron and nuclei in hydrogen molecule ion. The coupling effects are demonstrated by comparing differences in adiabatic Born--Oppenheimer and non-adiabatic simu lations, and inspecting projections of the full three-body dynamics onto adiabatic Born--Oppenheimer approximation. Coupling of electron and nuclear quantum dynamics is clearly seen. Nuclear pair correlation function is found to broaden by 0.040 a_0 and average bond length is larger by 0.056 a_0. Also, non-adiabatic correction to the binding energy is found. Electronic distribution is affected less, and therefore, we could say that the adiabatic approximation is better for the electron than for the nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا