ﻻ يوجد ملخص باللغة العربية
We report an optical technique that yields an enhancement of single-molecule photostability, by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum-jump of the molecule to the triplet state is optically detected. This procedure leads to a lengthened single-molecule observation time and an increased total number of detected photons. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics, and may allow the investigation of new phenomena at the single-molecule level.
Strong coupling with single molecules in plasmonic picocavities has emerged as a resource for room-temperature quantum control with nanoscale light. Tip-based nanoprobes can measure the local dynamics of individual molecular picocavities, but the ove
Optical activity is the ability of chiral materials to rotate linearly-polarized (LP) electromagnetic waves. Because of their intrinsic asymmetry, traditional chiral molecules usually lack isotropic performance, or at best only possess a weak form of
We realise a phase-sensitive closed-loop control scheme to engineer the fluctuations of the pump field which drives an optomechanical system, and show that the corresponding cooling dynamics can be significantly improved. In particular, operating in
The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum informat
The hierarchical equations of motion (HEOM) method is a powerful numerical approach to solve the dynamics and steady-state of a quantum system coupled to a non-Markovian and non-perturbative environment. Originally developed in the context of physica