ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of the angle resolved photoemission spectra in the undoped cuprates: self-consistent approach to the t-J-Holstein model

91   0   0.0 ( 0 )
 نشر من قبل Vittorio Cataudella
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J-Holstein model giving perfect agreement with numerically exact Diagrammatic Monte Carlo data at zero temperature for all regimes of electron-phonon coupling. Generalizing the approach to finite temperatures we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction.

قيم البحث

اقرأ أيضاً

We present a numerical study of the isotope effect on the angle resolved photoemission spectra (ARPES) in the undoped cuprates. By the systematic-error-free Diagrammatic Monte Carlo method, the Lehman spectral function of a single hole in the ttt-J m odel in the regime of intermediate and strong couplings to optical phonons is calculated for normal and isotope substituted systems. We found that the isotope effect is strongly energy-momentum dependent, and is anomalously enhanced in the intermediate coupling regime while it approaches to that of the localized hole model in the strong coupling regime. We predict the strengths of effect as well as the fine details of the ARPES lineshape change. Implications to the doped case are also discussed.
86 - Jia-Cheng He , Jie Hou , Yan Chen 2021
We develop the Gutzwiller approximation method to obtain the renormalized Hamiltonian of the SU(4) $t$-$J$ model, with the corresponding renormalization factors. Subsequently, a mean-field theory is employed on the renormalized Hamiltonian of the mod el on the honeycomb lattice under the scenario of a cooperative condensation of carriers moving in the resonating valence bond state of flavors. In particular, we find the extended $s$-wave superconductivity is much more favorable than the $d+id$ superconductivity in the doping range close to quarter filling. The pairing states of the SU(4) case reveal the property that the spin-singlet pairing and the spin-triplet pairing can exist simultaneously. Our results might provide new insights into the twisted bilayer graphene system.
We have investigated the doping and temperature dependences of the pseudogap/superconducting gap in the single-layer cuprate La$_{2-x}$Sr$_x$CuO$_4$ by angle-resolved photoemission spectroscopy. The results clearly exhibit two distinct energy and tem perature scales, namely, the gap around ($pi$,0) of magnitude $Delta^*$ and the gap around the node characterized by the d-wave order parameter $Delta_0$, like the double-layer cuprate Bi2212. In comparison with Bi2212 having higher $T_c$s, $Delta_0$ is smaller, while $Delta^*$ and $T^*$ are similar. This result suggests that $Delta^*$ and $T^*$ are approximately material-independent properties of a single CuO$_2$ plane, in contrast the material-dependent $Delta_0$, representing the pairing strength.
We present a systematic study of the phase diagram of the $t{-}t^prime{-}J$ model by using the Greens function Monte Carlo (GFMC) technique, implemented within the fixed-node (FN) approximation and a wave function that contains both antiferromagnetic and d-wave pairing. This enables us to study the interplay between these two kinds of order and compare the GFMC results with the ones obtained by the simple variational approach. By using a generalization of the forward-walking technique, we are able to calculate true FN ground-state expectation values of the pair-pair correlation functions. In the case of $t^prime=0$, there is a large region with a coexistence of superconductivity and antiferromagnetism, that survives up to $delta_c sim 0.10$ for $J/t=0.2$ and $delta_c sim 0.13$ for $J/t=0.4$. The presence of a finite $t^prime/t<0$ induces a strong suppression of both magnetic (with $delta_c lesssim 0.03$, for $J/t=0.2$ and $t^prime/t=-0.2$) and pairing correlations. In particular, the latter ones are depressed both in the low-doping regime and around $delta sim 0.25$, where strong size effects are present.
Atomic repulsion $U_d$ on the Cu site in high T$_c$ cuprates is large but, surprisingly, some important properties are consistent with moderate couplings. The time dependent perturbation theory with slave particles is therefore formulated in the $U_d toinfty$ limit for the metallic phase in the physically relevant regime of the three-band Emery model. The basic theory possesses the local gauge invariance asymptotically but its convergence is fast when the average occupation of the Cu-site is small. The leading orders exhibit the band narrowing and the dynamic Cu/O$_2$ charge transfer disorder. The effective local repulsion between particles on oxygen sites is shown to be moderate in the physical regime under consideration. It enhances the coherent incommensurate SDW correlations. The latter compete with the Cu/O$_2$ charge transfer disorder, in agreement with basic observations in high T$_c$ cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا