ﻻ يوجد ملخص باللغة العربية
We show that Selbergs eigenvalue conjecture concerning small eigenvalues of the automorphic Laplacian for congruence groups is equivalent to a conjecture about the non-existence of residual eigenvalues for a perturbed system. We prove this using a combination of methods from asymptotic perturbation theory and number theory.
For hyperbolic Riemann surfaces of finite geometry, we study Selbergs zeta function and its relation to the relative scattering phase and the resonances of the Laplacian. As an application we show that the conjugacy class of a finitely generated, tor
This paper is concerned with methods for numerical computation of eigenvalue enclosures. We examine in close detail the equivalence between an extension of the Lehmann-Maehly-Goerisch method developed a few years ago by Zimmermann and Mertins, and a
We prove two explicit bounds for the multiplicities of Steklov eigenvalues $sigma_k$ on compact surfaces with boundary. One of the bounds depends only on the genus of a surface and the index $k$ of an eigenvalue, while the other depends as well on th
The paper is concerned with the maximization of Laplace eigenvalues on surfaces of given volume with a Riemannian metric in a fixed conformal class. A significant progress on this problem has been recently achieved by Nadirashvili-Sire and Petrides u
We investigate multiplicity and symmetry properties of higher eigenvalues and eigenfunctions of the $p$-Laplacian under homogeneous Dirichlet boundary conditions on certain symmetric domains $Omega subset mathbb{R}^N$. By means of topological argumen