ﻻ يوجد ملخص باللغة العربية
We obtain analytic formulae for the spacing between conductance peaks in the Coulomb blockade regime, based on the universal Hamiltonian model of quantum dots. New random matrix theory results are developed in order to treat correlations between two and three consecutive spacings in the energy level spectrum. These are generalizations of the Wigner surmise for the probability distribution of single level spacing. The analytic formulae are shown to be in good agreement with numerical evaluation.
We investigate the spin of the ground state of a geometrically confined many-electron system. For atoms, shell structure simplifies this problem-- the spin is prescribed by the well-known Hunds rule. In contrast, quantum dots provide a controllable s
We review the quantum interference effects in a system of interacting electrons confined to a quantum dot. The review starts with a description of an isolated quantum dot. We discuss the status of the Random Matrix theory (RMT) of the one-electron st
The conductance through a quantum wire of cylindrical cross section and a weak bulge is solved exactly for two electrons within the Landauer-Buettiker formalism. We show that this open quantum dot exhibits spin-dependent Coulomb blockade resonances r
We present Coulomb Blockade measurements of two few-electron quantum dots in series which are configured such that the electrochemical potential of one of the two dots is aligned with spin-selective leads. The charge transfer through the system requi
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures