ﻻ يوجد ملخص باللغة العربية
We predict that neutral graphene bilayers are pseudospin magnets in which the charge density-contribution from each valley and spin spontaneously shifts to one of the two layers. The band structure of this system is characterized by a momentum-space vortex which is responsible for unusual competition between band and kinetic energies leading to symmetry breaking in the vortex core. We discuss the possibility of realizing a pseudospin version of ferromagnetic metal spintronics in graphene bilayers based on hysteresis associated with this broken symmetry.
We perform Monte Carlo simulations to study the interplay of structural and magnetic order in single layer graphene covered with magnetic adatoms. We propose that the presence of ripples in the graphene structure can lead to clustering of the adatoms
We investigate the ground-state properties of triangular graphene nanoflakes with zigzag edge configurations. The description of zero-dimensional nanostructures requires accurate many-body techniques since the widely used density-functional theory wi
Interband optical transitions in graphene are subject to pseudospin selection rules. Impulsive excitation with linearly polarized light generates an anisotropic photocarrier occupation in momentum space that evolves at timescales shorter than 100fs.
The tunable magnetism at graphene edges with lengths of up to 48 unit cells is analyzed by an exact diagonalization technique. For this we use a generalized interacting one-dimensional model which can be tuned continuously from a limit describing gra
The cooperative behavior of quantum impurities on 2D materials, such as graphene and bilayer graphene, is characterized by a non-trivial competition between screening (Kondo effect), and Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetism. In addition, du