ﻻ يوجد ملخص باللغة العربية
In [5], Srijuntongsiri and Vavasis propose the Kantorovich-Test Subdivision algorithm, or KTS, which is an algorithm for finding all zeros of a polynomial system in a bounded region of the plane. This algorithm can be used to find the intersections between a line and a surface. The main features of KTS are that it can operate on polynomials represented in any basis that satisfies certain conditions and that its efficiency has an upper bound that depends only on the conditioning of the problem and the choice of the basis representing the polynomial system. This article explores in detail the dependence of the efficiency of the KTS algorithm on the choice of basis. Three bases are considered: the power, the Bernstein, and the Chebyshev bases. These three bases satisfy the basis properties required by KTS. Theoretically, Chebyshev case has the smallest upper bound on its running time. The computational results, however, do not show that Chebyshev case performs better than the other two.
There are very few results on mixed finite element methods on surfaces. A theory for the study of such methods was given recently by Holst and Stern, using a variational crimes framework in the context of finite element exterior calculus. However, we
In a previous paper [1] it was discussed the viability of functional analysis using as a basis a couple of generic functions, and hence vectorial decomposition. Here we complete the paradigm exploiting one of the analysis methodologies developed ther
Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization, $ell_1$ norm regularized optimization, and $ell_0$ norm regularized optimization as spe
This paper describes the algorithms, features and implementation of PyDEC, a Python library for computations related to the discretization of exterior calculus. PyDEC facilitates inquiry into both physical problems on manifolds as well as purely topo
We consider equation systems of the form X_1 = f_1(X_1, ..., X_n), ..., X_n = f_n(X_1, ..., X_n) where f_1, ..., f_n are polynomials with positive real coefficients. In vector form we denote such an equation system by X = f(X) and call f a system of