ترغب بنشر مسار تعليمي؟ اضغط هنا

Lithium in LP 944-20

175   0   0.0 ( 0 )
 نشر من قبل Yakiv Pavlenko V.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ya.V.Pavlenko




اسأل ChatGPT حول البحث

We present a new estimate of the lithium abundance in the atmosphere of the brown dwarf LP 944-20. Our analysis is based on a self-consistent analysis of low, intermediate and high resolution optical and near-infrared spectra. We obtain log N(Li) = 3.25 +/-0.25 using fits of our synthetic spectra to the Li I resonance line doublet profiles observed with VLT/UVES and AAT/SPIRAL. This lithium abundance is over two orders of magnitude larger than previous estimates in the literature. In order to obtain good fits of the resonance lines of K I and Rb I and better fits to the TiO molecular absorption around the Li I resonance line, we invoke a semi-empirical model atmosphere with the dusty clouds located above the photosphere. The lithium abundance, however, is not changed by the effects of the dusty clouds. We discuss the implications of our estimate of the lithium abundance in LP 944-20 for the understanding of the properties of this benchmark brown dwarf.

قيم البحث

اقرأ أيضاً

We investigate perfect codes in $mathbb{Z}^n$ under the $ell_p$ metric. Upper bounds for the packing radius $r$ of a linear perfect code, in terms of the metric parameter $p$ and the dimension $n$ are derived. For $p = 2$ and $n = 2, 3$, we determine all radii for which there are linear perfect codes. The non-existence results for codes in $mathbb{Z}^n$ presented here imply non-existence results for codes over finite alphabets $mathbb{Z}_q$, when the alphabet size is large enough, and has implications on some recent constructions of spherical codes.
Using the high-resolution near-infrared adaptive optics imaging from the NaCo instrument at the Very Large Telescope, we report the discovery of a new binary companion to the M-dwarf LP 1033-31 and also confirm the binarity of LP 877-72. We have char acterised both the stellar systems and estimated the properties of their individual components. We have found that LP 1033-31 AB with the spectral type of M4.5+M4.5 has a projected separation of 6.7$pm$1.3 AU. Whereas with the spectral type of M1+M4, the projected separation of LP 877-72 AB is estimated to be 45.8$pm$0.3 AU. The binary companions of LP 1033-31 AB are found to have similar masses, radii, effective temperatures, and log $g$ with the estimated values of 0.20$pm$0.04 $rm{M}_{odot}$, 0.22$pm$0.03 $rm{R}_{odot}$, 3200 K, 5.06$pm$0.04. However, the primary of LP 877-72 AB is found to be twice as massive as the secondary with the derived mass of 0.520$pm$0.006 $rm{M}_{odot}$. The radius and log $g$ for the primary of LP 877-72 AB are found to be 1.8 and 0.95 times that of the secondary component with the estimated values of 0.492$pm$0.011 $rm{R}_{odot}$ and 4.768$pm$0.005, respectively. With an effective temperature of 3750$pm$15 K, the primary of LP 877-72 AB is also estimated to be $sim$400 K hotter than the secondary component. We have also estimated the orbital period of LP 1033-31 and LP 877-72 to be $sim$28 and $sim$349 yr, respectively. The binding energies for both systems are found to be $gt$10$^{43}$ erg, which signifies both systems are stable.
A porous electrode resulting from unregulated Li growth is the major cause of the low Coulombic efficiency and potential safety hazards of rechargeable Li metal batteries. Strategies aiming to achieve large granular Li deposits have been extensively explored; yet, the ideal Li deposits, which consist of large Li particles that are seamlessly packed on the electrode and can be reversibly deposited and stripped, have never been achieved. Here, by controlling the uniaxial stack pressure during battery operation, a dense Li deposition (99.49% electrode density) with an ideal columnar structure has been achieved. Using multi-scale characterization and simulation, we elucidated the critical role of stack pressure on Li nucleation, growth and dissolution processes, and developed innovative strategies to maintain the ideal Li morphology during extended cycling. The precision manipulation of Li deposition and dissolution is a critical step to enable fast charging and low temperature operation for Li metal batteries.
We present and evaluate a compiler from Prolog (and extensions) to JavaScript which makes it possible to use (constraint) logic programming to develop the client side of web applications while being compliant with current industry standards. Targetin g JavaScript makes (C)LP programs executable in virtually every modern computing device with no additional software requirements from the point of view of the user. In turn, the use of a very high-level language facilitates the development of high-quality, complex software. The compiler is a back end of the Ciao system and supports most of its features, including its module system and its rich language extension mechanism based on packages. We present an overview of the compilation process and a detailed description of the run-time system, including the support for modular compilation into separate JavaScript code. We demonstrate the maturity of the compiler by testing it with complex code such as a CLP(FD) library written in Prolog with attributed variables. Finally, we validate our proposal by measuring the performance of some LP and CLP(FD) benchmarks running on top of major JavaScript engines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا