ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Projection in an Ising Spin Liquid

62   0   0.0 ( 0 )
 نشر من قبل Daniel Silevitch
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A transverse magnetic field is used to scan the diagonal and off-diagonal susceptibility of the uniaxial quantum magnet, $text{LiHo}_{0.045}text{Y}_{0.955}text{F}_4$. Clusters of strongly-coupled spins act as the primary source for the response functions, which result from a field-induced quantum projection of the system into a classically forbidden (meaning non-Ising) regime. Calculations based on spin pairs reproduce only some features of the data and fail to predict the measured off-diagonal response, providing evidence of a multi-spin collective state.


قيم البحث

اقرأ أيضاً

We study the level-spacing statistics in the entanglement spectrum of output states of random universal quantum circuits where qubits are subject to a finite probability of projection to the computational basis at each time step. We encounter two pha se transitions with increasing projection rate: The first is the volume-to-area law transition observed in quantum circuits with projective measurements; The second separates the pure Poisson level statistics phase at large projective measurement rates from a regime of residual level repulsion in the entanglement spectrum within the area-law phase, characterized by non-universal level spacing statistics that interpolates between the Wigner-Dyson and Poisson distributions. By applying a tensor network contraction algorithm introduced in Ref. [1] to the circuit spacetime, we identify this second projective-measurement-driven transition as a percolation transition of entangled bonds. The same behavior is observed in both circuits of random two-qubit unitaries and circuits of universal gate sets, including the set implemented by Google in its Sycamore circuits.
194 - Thomas Vojta , J. A. Hoyos 2010
We investigate the quantum phase transition in the random transverse-field Ising model under the influence of Ohmic dissipation. To this end, we numerically implement a strong-disorder renormalization-group scheme. We find that Ohmic dissipation dest roys the quantum critical point and the associated quantum Griffiths phase by smearing. Our results quantitatively confirm a recent theory [Phys. Rev. Lett. {bf 100}, 240601 (2008)] of smeared quantum phase transitions.
Using Monte Carlo simulations, we study the character of the spin-glass (SG) state of a site-diluted dipolar Ising model. We consider systems of dipoles randomly placed on a fraction x of all L^3 sites of a simple cubic lattice that point up or down along a given crystalline axis. For x < 0.65 these systems are known to exhibit an equilibrium spin-glass phase below a temperature T_sg proportional to x. At high dilution and very low temperatures, well deep in the SG phase, we find spiky distributions of the overlap parameter q that are strongly sample-dependent. We focus on spikes associated with large excitations. From cumulative distributions of q and a pair correlation function averaged over several thousands of samples we find that, for the system sizes studied, the average width of spikes, and the fraction of samples with spikes higher than a certain threshold does not vary appreciably with L. This is compared with the behaviour found for the Sherrington-Kirkpatrick model.
54 - Yanxing Yang , Xin Li , Cheng Tan 2021
Quantum fluctuations are expected to lead to highly entangled spin-liquid states in some two-dimensional spin-1/2 compounds. We have synthesized and measured thermodynamic properties and muon relaxation rates in Cu-based two-dimensional triangular-la ttice spin liquids, one of which is the least disordered of this kind synthesized hitherto. Its measured properties can all be simply characterized by scale-invariant time-dependent fluctuations with a single parameter. The specific heat divided by temperature and muon relaxation rates are both temperature-independent at low temperatures, followed by a logarithmic decrease with increasing temperature. Even more remarkably, $sim$57% of the magnetic entropy is missing down to temperatures of textit{O}(10$^{-3}$) the exchange energy, independent of magnetic field up to $gmu_BH > k_BT$@. These properties are intrinsic. They are evidence that quantum fluctuations lead either to a gigantic specific heat peak from topological singlet excitations below such temperatures, or to an extensively degenerate topological singlet ground state. This is an ultra-quantum state of matter.
We study the $pm J$ transverse-field Ising spin glass model at zero temperature on d-dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong field limit. In the SK model and in high-dimens ions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension $d = 6$ which is below the upper critical dimension of $d=8$. In contrast, in lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power-moments of the local susceptibility become singular in the paramagnetic phase $textit{before}$ the critical point. Griffiths-McCoy singularities are very strong in two-dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا