ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization in networks of networks: the onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators

107   0   0.0 ( 0 )
 نشر من قبل Ernest Barreto
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Ernest Barreto




اسأل ChatGPT حول البحث

The onset of synchronization in networks of networks is investigated. Specifically, we consider networks of interacting phase oscillators in which the set of oscillators is composed of several distinct populations. The oscillators in a given population are heterogeneous in that their natural frequencies are drawn from a given distribution, and each population has its own such distribution. The coupling among the oscillators is global, however, we permit the coupling strengths between the members of different populations to be separately specified. We determine the critical condition for the onset of coherent collective behavior, and develop the illustrative case in which the oscillator frequencies are drawn from a set of (possibly different) Cauchy-Lorentz distributions. One motivation is drawn from neurobiology, in which the collective dynamics of several interacting populations of oscillators (such as excitatory and inhibitory neurons and glia) are of interest.



قيم البحث

اقرأ أيضاً

Suppose we are given a system of coupled oscillators on an arbitrary graph along with the trajectory of the system during some period. Can we predict whether the system will eventually synchronize? This is an important but analytically intractable qu estion especially when the structure of the underlying graph is highly varied. In this work, we take an entirely different approach that we call learning to predict synchronization (L2PSync), by viewing it as a classification problem for sets of graphs paired with initial dynamics into two classes: `synchronizing or `non-synchronizing. Our conclusion is that, once trained on large enough datasets of synchronizing and non-synchronizing dynamics on heterogeneous sets of graphs, a number of binary classification algorithms can successfully predict the future of an unknown system with surprising accuracy. We also propose an ensemble prediction algorithm that scales up our method to large graphs by training on dynamics observed from multiple random subgraphs. We find that in many instances, the first few iterations of the dynamics are far more important than the static features of the graphs. We demonstrate our method on three models of continuous and discrete coupled oscillators -- The Kuramoto model, the Firefly Cellular Automata, and the Greenberg-Hastings model.
Statistical methods for reconstructing networks from repeated measurements typically assume that all measurements are generated from the same underlying network structure. This need not be the case, however. Peoples social networks might be different on weekdays and weekends, for instance. Brain networks may differ between healthy patients and those with dementia or other conditions. Here we describe a Bayesian analysis framework for such data that allows for the fact that network measurements may be reflective of multiple possible structures. We define a finite mixture model of the measurement process and derive a fast Gibbs sampling procedure that samples exactly from the full posterior distribution of model parameters. The end result is a clustering of the measured networks into groups with similar structure. We demonstrate the method on both real and synthetic network populations.
We show that subsets of interacting oscillators may synchronize in different ways within a single network. This diversity of synchronization patterns is promoted by increasing the heterogeneous distribution of coupling weights and/or asymmetries in s mall networks. We also analyze consistency, defined as the persistence of coexistent synchronization patterns regardless of the initial conditions. Our results show that complex weighted networks display richer consistency than regular networks, suggesting why certain functional network topologies are often constructed when experimental data are analyzed.
We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay or various cluster states, can be selected.
By numerical simulations, we investigate the onset of synchronization of networked phase oscillators under two different weighting schemes. In scheme-I, the link weights are correlated to the product of the degrees of the connected nodes, so this kin d of networks is named as the weight-degree correlated (WDC) network. In scheme-II, the link weights are randomly assigned to each link regardless of the node degrees, so this kind of networks is named as the weight-degree uncorrelated (WDU) network. Interestingly, it is found that by increasing a parameter that governs the weight distribution, the onset of synchronization in WDC network is monotonically enhanced, while in WDU network there is a reverse in the synchronization performance. We investigate this phenomenon from the viewpoint of gradient network, and explain the contrary roles of coupling gradient on network synchronization: gradient promotes synchronization in WDC network, while deteriorates synchronization in WDU network. The findings highlight the fact that, besides the link weight, the correlation between the weight and node degree is also important to the network dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا