ﻻ يوجد ملخص باللغة العربية
Statistical methods for reconstructing networks from repeated measurements typically assume that all measurements are generated from the same underlying network structure. This need not be the case, however. Peoples social networks might be different on weekdays and weekends, for instance. Brain networks may differ between healthy patients and those with dementia or other conditions. Here we describe a Bayesian analysis framework for such data that allows for the fact that network measurements may be reflective of multiple possible structures. We define a finite mixture model of the measurement process and derive a fast Gibbs sampling procedure that samples exactly from the full posterior distribution of model parameters. The end result is a clustering of the measured networks into groups with similar structure. We demonstrate the method on both real and synthetic network populations.
In-depth studies of sociotechnical systems are largely limited to single instances. Network surveys are expensive, and platforms vary in important ways, from interface design, to social norms, to historical contingencies. With single examples, we can
Heterogeneous networks are networks consisting of different types of nodes and multiple types of edges linking such nodes. While community detection has been extensively developed as a useful technique for analyzing networks that contain only one typ
Heterogeneous Information Network (HIN) has attracted much attention due to its wide applicability in a variety of data mining tasks, especially for tasks with multi-typed objects. A potentially large number of meta-paths can be extracted from the he
Many real networks that are inferred or collected from data are incomplete due to missing edges. Missing edges can be inherent to the dataset (Facebook friend links will never be complete) or the result of sampling (one may only have access to a port
There has been a surge of interest in community detection in homogeneous single-relational networks which contain only one type of nodes and edges. However, many real-world systems are naturally described as heterogeneous multi-relational networks wh