ترغب بنشر مسار تعليمي؟ اضغط هنا

A three-dimensional backward-wave network matched with free space

57   0   0.0 ( 0 )
 نشر من قبل Pekka Alitalo
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A backward-wave slab based on a capacitively and inductively loaded three-dimensional transmission-line network is designed in such a way that impedance-matching with free space is obtained. To enable field propagation from free space to the network and vice versa, the use of a transition layer is proposed. Matching of the designed network with free space and negative refraction occurring at the slab interfaces are confirmed with full-wave simulations.


قيم البحث

اقرأ أيضاً

Alignment and orientation of molecules by intense, ultrashort laser fields are crucial for a variety of applications in physics and chemistry. These include control of high harmonics generation, molecular orbitals tomography, control of molecular pho toionization and dissociation processes, production of molecular movies with the help of X-ray free-electron laser sources and ultrafast electron diffraction of relativistic electrons. While the dynamics of laser-induced molecular alignment has been extensively studied and demonstrated, molecular orientation is a much more challenging task, especially for asymmetric-top molecules. Here we report the first experimental demonstration of a field-free, all-optical three-dimensional orientation of asymmetric-top molecules by means of phase-locked cross-polarized two-color laser pulses. In addition to the conventional integrated orientation factor, we report the differential degree of orientation which is not amenable to optical measurements, but is readily accessible in our angle-resolved imaging technique. Our scheme applies to a wide class of asymmetric molecules and opens new ways towards controlling their orientation, eventually leading to direct imaging of structure of gas-phase molecules using advanced free electron laser beams with extremely high spatiotemporal resolution.
Depth cameras are emerging as a cornerstone modality with diverse applications that directly or indirectly rely on measured depth, including personal devices, robotics, and self-driving vehicles. Although time-of-flight (ToF) methods have fueled thes e applications, the precision and robustness of ToF methods is limited by relying on photon time-tagging or modulation after photo-conversion. Successful optical modulation approaches have been restricted fiber-coupled modulation with large coupling losses or interferometric modulation with sub-cm range, and the precision gap between interferometric methods and ToF methods is more than three orders of magnitudes. In this work, we close this gap and propose a computational imaging method for all-optical free-space correlation before photo-conversion that achieves micron-scale depth resolution with robustness to surface reflectance and ambient light with conventional silicon intensity sensors. To this end, we solve two technical challenges: modulating at GHz rates and computational phase unwrapping. We propose an imaging approach with resonant polarization modulators and devise a novel optical dual-pass frequency-doubling which achieves high modulation contrast at more than 10GHz. At the same time, centimeter-wave modulation together with a small modulation bandwidth render existing phase unwrapping methods ineffective. We tackle this problem with a neural phase unwrapping method that exploits that adjacent wraps are often highly correlated. We validate the proposed method in simulation and experimentally, where it achieves micron-scale depth precision. We demonstrate precise depth sensing independently of surface texture and ambient light and compare against existing analog demodulation methods, which we outperform across all tested scenarios.
We demonstrate an unseeded, multimode four-wave mixing process in hot $^{85}$Rb vapor, using two pump beams of the same frequency that cross at a small angle. This results in the simultaneous fulfillment of multiple phase-matching conditions that rei nforce one another to produce four intensity-stabilized bright output modes at two different frequencies. Each generated photon is directly correlated to exactly two others, resulting in the preferred four-mode output, in contrast to other multimode four-wave mixing experiments. This provides significant insight into the optimal configuration of the output multimode squeezed and entangled states generated in such four-wave mixing systems. We examine the power, temperature and frequency dependence of this new output and compare to the conical four-wave mixing emission from a single pump beam. The generated beams are spatially separated, allowing a natural distribution for potential use in quantum communication and secret-sharing protocols.
134 - Tetsuyuki Ochiai 2015
We present the emergence of gapless surface states in a three-dimensional Chalker-Coddington type network model with spatial periodicity. The model consists of a ring network placed on every face of the cubic unit cells in the simple cubic lattice. T he scattering among ring-propagating modes in the adjacent rings is described by the S-matrices, which control possible symmetries of the system. The model maps to a Floquet-Bloch system, and the quasienergy spectrum can exhibit a gapped bulk band structure and gapless surface states. Symmetry properties of the system and robustness of the gapless surface states are explored in comparison to topological crystalline insulator. We also discuss other crystal structures, a gauge symmetry, and a possible optical realization of the network model.
As artificial neural networks (ANNs) continue to make strides in wide-ranging and diverse fields of technology, the search for more efficient hardware implementations beyond conventional electronics is gaining traction. In particular, optical impleme ntations potentially offer extraordinary gains in terms of speed and reduced energy consumption due to intrinsic parallelism of free-space optics. At the same time, a physical nonlinearity, a crucial ingredient of an ANN, is not easy to realize in free-space optics, which restricts the potential of this platform. This problem is further exacerbated by the need to perform the nonlinear activation also in parallel for each data point to preserve the benefit of linear free-space optics. Here, we present a free-space optical ANN with diffraction-based linear weight summation and nonlinear activation enabled by the saturable absorption of thermal atoms. We demonstrate, via both simulation and experiment, image classification of handwritten digits using only a single layer and observed 6-percent improvement in classification accuracy due to the optical nonlinearity compared to a linear model. Our platform preserves the massive parallelism of free-space optics even with physical nonlinearity, and thus opens the way for novel designs and wider deployment of optical ANNs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا