ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal mode configuration for multiple phase-matched four-wave mixing processes

154   0   0.0 ( 0 )
 نشر من قبل Erin Knutson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate an unseeded, multimode four-wave mixing process in hot $^{85}$Rb vapor, using two pump beams of the same frequency that cross at a small angle. This results in the simultaneous fulfillment of multiple phase-matching conditions that reinforce one another to produce four intensity-stabilized bright output modes at two different frequencies. Each generated photon is directly correlated to exactly two others, resulting in the preferred four-mode output, in contrast to other multimode four-wave mixing experiments. This provides significant insight into the optimal configuration of the output multimode squeezed and entangled states generated in such four-wave mixing systems. We examine the power, temperature and frequency dependence of this new output and compare to the conical four-wave mixing emission from a single pump beam. The generated beams are spatially separated, allowing a natural distribution for potential use in quantum communication and secret-sharing protocols.

قيم البحث

اقرأ أيضاً

We demonstrate a new four-wave mixing (4WM) geometry based on structured light. By utilizing near-field diffraction through a narrow slit, the pump beam is asymmetrically structured to modify the phase matching condition, generating multi-mode output in both the spatial and frequency domains. We show that the frequency parameter enables selection of various spatial-mode outputs, including a twin-beam geometry which preserves relative intensity squeezing shared between the two beams. The results suggest that the engineering of atomic states via structured light may provide a pathway to a diverse set of quantum resources based on multi-mode squeezed light.
Quantum states of light can improve imaging whenever the image quality and resolution are limited by the quantum noise of the illumination. In the case of a bright illumination, quantum enhancement is obtained for a light field composed of many squee zed transverse modes. A possible realization of such a multi-spatial-mode squeezed state is a field which contains a transverse plane in which the local electric field displays reduced quantum fluctuations at all locations, on any one quadrature. Using nondegenerate four-wave mixing in a hot vapor, we have generated a bichromatic multi-spatial-mode squeezed state and showed that it exhibits localised quadrature squeezing at any point of its transverse profile, in regions much smaller than its size. We observe 75 independently squeezed regions. This confirms the potential of this technique for producing illumination suitable for practical quantum imaging.
128 - Z. Vernon , J.E. Sipe 2015
We develop a general Hamiltonian treatement of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self- and cross-phase modulation. A procedure for computing the output of such a system for arbitrary parameters and pump states is presented. For the limit of weak pumping an expression for the joint spectral intensity of generated photon pairs, as well as the singles-to-coincidences ratio, is derived.
We have observed the ultraslow propagation of matched pulses in nondegenerate four-wave mixing in a hot atomic vapor. Probe pulses as short as 70 ns can be delayed by a tunable time of up to 40 ns with little broadening or distortion. During the prop agation, a probe pulse is amplified and generates a conjugate pulse which is faster and separates from the probe pulse before getting locked to it at a fixed delay. The precise timing of this process allows us to determine the key coefficients of the susceptibility tensor. The presence of gain in this system makes this system very interesting in the context of all-optical information processing.
Using four-wave mixing in a hot atomic vapor, we generate a pair of entangled twin beams in the microsecond pulsed regime near the D1 line of $^{85}$Rb, making it compatible with commonly used quantum memory techniques. The beams are generated in the bright and vacuum-squeezed regimes, requiring two separate methods of analysis, without and with local oscillators, respectively. We report a noise reduction of up to $3.8pm 0.2$ dB below the standard quantum limit in the pulsed regime and a level of entanglement that violates an Einstein--Podolsky--Rosen inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا