ترغب بنشر مسار تعليمي؟ اضغط هنا

An application of transverse-momentum-dependent evolution equations in QCD

228   0   0.0 ( 0 )
 نشر من قبل Federico Alberto Ceccopieri
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties and behaviour of the solutions of the recently obtained $k_t$-dependent evolution equations are investigated. When used to reproduce transverse momentum spectra of hadrons in Semi-Inclusive DIS, an encouraging agreement with data is found. The present analysis also supports at the phenomenological level the factorization properties of the Semi-Inclusive DIS cross-sections in terms of $k_t$-dependent distributions. Further improvements and possible developments of the proposed evolution equations are envisaged.

قيم البحث

اقرأ أيضاً

We reconsider the evolution equations for transverse momentum dependent distributions recently proposed by us and recast them in a form which allows the comparison with results recently appeared in the literature. We show under which conditions the o btained results might be consistent with each other.
67 - Ted C. Rogers 2015
I review TMD factorization and evolution theorems, with an emphasis on the treatment by Collins and originating in the Collins-Soper-Sterman (CSS) formalism. I summarize basic results while attempting to trace their development over that past several decades.
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small-x limit, for the various unpolarized TMD gluon distribut ions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping Nc finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essentially disappears, while at small transverse momentum, non-linear saturation effects impact the various TMD gluon distributions in very different ways. We notice the presence of a geometric scaling regime for all the TMD gluon distributions studied: the dipole one, the Weizsacker-Williams one, and the six others involved in forward di-jet production.
We discuss the evolution of the eight leading twist transverse momentum dependent parton distribution functions, which turns out to be universal and spin independent. By using the highest order perturbatively calculable ingredients at our disposal, w e perform the resummation of the large logarithms that appear in the evolution kernel of transverse momentum distributions up to next-to-next-to-leading logarithms (NNLL), thus obtaining an expression for the kernel with highly reduced model dependence. Our results can also be obtained using the standard CSS approach when a particular choice of the $b^*$ prescription is used. In this sense, and while restricted to the perturbative domain of applicability, we consider our results as a prediction of the correct value of $b_{rm max}$ which is very close to $1.5 {rm GeV}^{-1}$. We explore under which kinematical conditions the effects of the non-perturbative region are negligible, and hence the evolution of transverse momentum distributions can be applied in a model independent way. The application of the kernel is illustrated by considering the unpolarized transverse momentum dependent parton distribution function and the Sivers function.
In this work, we perform a systematic lattice QCD study of the intrinsic, rapidity-independent soft function within the framework of large momentum effective theory. The computation is carried out using a gauge ensemble of $N_f=2+1+1$ clover-improved twisted mass fermions. After applying an appropriate renormalization procedure and the removal of significant higher-twist contamination, we obtain the intrinsic soft function that is comparable to the one-loop perturbative result at large external momentum. The determination of the non-pertrubative soft function from first principles is crucial to sharpen our understanding of the processes with small transverse momentum such as the Drell-Yan production and the semi-inclusive deep inelastic scattering. Additionally, we calculate the Collins-Soper evolution kernel using the quasi-transverse-momentum-dependent wave function as input.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا