ﻻ يوجد ملخص باللغة العربية
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small-x limit, for the various unpolarized TMD gluon distributions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping Nc finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essentially disappears, while at small transverse momentum, non-linear saturation effects impact the various TMD gluon distributions in very different ways. We notice the presence of a geometric scaling regime for all the TMD gluon distributions studied: the dipole one, the Weizsacker-Williams one, and the six others involved in forward di-jet production.
We perform explorative analyses of the 3D gluon content of the proton via a study of (un)polarized twist-2 gluon TMDs, calculated in a spectator model for the parent nucleon. Our approach encodes a flexible parametrization for the spectator-mass dens
We reconsider the evolution equations for transverse momentum dependent distributions recently proposed by us and recast them in a form which allows the comparison with results recently appeared in the literature. We show under which conditions the o
We investigate the predictive power of transverse-momentum-dependent (TMD) distributions as a function of the light-cone momentum fraction $x$ and the hard scale $Q$ defined by the process. We apply the saddle point approximation to the unpolarized q
Hadron production at low transverse momenta in semi-inclusive deep inelastic scattering can be described by transverse momentum dependent (TMD) factorization. This formalism has also been widely used to study the Drell-Yan process and back-to-back ha
We investigate the relations between transverse momentum dependent parton distributions (TMDs) and generalized parton distributions (GPDs) in a light-front quark-diquark model motivated by soft wall AdS/QCD. Many relations are found to have similar s