ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the viability of the interacting holographic dark energy model by using combined observational constraints

151   0   0.0 ( 0 )
 نشر من قبل Bin Wang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the data coming from the new 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, $H(z)$ and lookback time measurements, we have performed a statistical joint analysis of the interacting holographic dark energy model. Consistent parameter estimations show us that the interacting holographic dark energy model is a viable candidate to explain the observed acceleration of our universe.

قيم البحث

اقرأ أيضاً

We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates.
We use observational data from Supernovae (SNIa) Pantheon sample, as well as from direct measurements of the Hubble parameter from the cosmic chronometers (CC) sample, in order to extract constraints on the scenario of Barrow holographic dark energy. The latter is a holographic dark energy model based on the recently proposed Barrow entropy, which arises from the modification of the black-hole surface due to quantum-gravitational effects. We first consider the case where the new deformation exponent $Delta$ is the sole model parameter, and we show that although the standard value $Delta=0$, which corresponds to zero deformation, lies within the 1$sigma$ region, a deviation is favored. In the case where we let both $Delta$ and the second model parameter to be free we find that a deviation from standard holographic dark energy is preferred. Additionally, applying the Akaike, Bayesian and Deviance Information Criteria, we conclude that the one-parameter model is statistically compatible with $Lambda$CDM paradigm, and preferred comparing to the two-parameter one. Finally, concerning the present value of the Hubble parameter we find that it is close to the Planck value.
We consider the holographic Friedman-Robertson-Walker (hFRW) universe on the 4-dimensional membrane embedded in the 5-dimensional bulk spacetime and fit the parameters with the observational data. In order to fully account for the phenomenology of th is scenario, we consider the models with the brane cosmological constant and the negative bulk cosmological constant. The contribution from the bulk is represented as the holographic dark fluid on the membrane. We derive the universal modified Friedmann equation by including all of these effects in both braneworld and holographic cutoff approaches. For three specific models, namely, the pure hFRW model, the one with the brane cosmological constant, and the one with the negative bulk cosmological constant, we compare the model predictions with the observations. The parameters in the considered hFRW models are constrained with observational data. In particular, it is shown that the model with the brane cosmological constant can fit data as well as the standard $Lambda$CDM universe. We also find that the $sigma_8$ tension observed in different large-structure experiments can be effectively relaxed in this holographic scenario.
A novel fractal structure for the cosmological horizon, inspired by COVID-19 geometry, which results in a modified area entropy, is applied to cosmology in order to serve dark energy. The constraints based on a complete set of observational data are derived. There is a strong Bayesian evidence in favor of such a dark energy in comparison to a standard $Lambda$CDM model and that this energy cannot be reduced to a cosmological constant. Besides, there is a shift towards smaller values of baryon density parameter and towards larger values of the Hubble parameter, which reduces the Hubble tension.
So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energ y density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning the cosmic expansion depend on the introduced numerical parameters which are also constrained. The more general interacting model inherits the features of the previous ones of HDE, keeping the consistency of the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا