ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Survey of Interstellar ^12CO/^13CO in the Solar Neighborhood

108   0   0.0 ( 0 )
 نشر من قبل Yaron Sheffer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine 20 diffuse and translucent Galactic sight lines and extract the column densities of the ^12CO and ^13CO isotopologues from their ultraviolet A--X absorption bands detected in archival Space Telescope Imaging Spectrograph data with lambda/Deltalambda geq 46,000. Five more targets with Goddard High-Resolution Spectrograph data are added to the sample that more than doubles the number of sight lines with published Hubble Space Telescope observations of ^13CO. Most sight lines have 12-to-13 isotopic ratios that are not significantly different from the local value of 70 for ^12C/^13C, which is based on mm-wave observations of rotational lines in emission from CO and H_2CO inside dense molecular clouds, as well as on results from optical measurements of CH^+. Five of the 25 sight lines are found to be fractionated toward lower 12-to-13 values, while three sight lines in the sample are fractionated toward higher ratios, signaling the predominance of either isotopic charge exchange or selective photodissociation, respectively. There are no obvious trends of the ^12CO-to-^13CO ratio with physical conditions such as gas temperature or density, yet ^12CO/^13CO does vary in a complicated manner with the column density of either CO isotopologue, owing to varying levels of competition between isotopic charge exchange and selective photodissociation in the fractionation of CO. Finally, rotational temperatures of H_2 show that all sight lines with detected amounts of ^13CO pass through gas that is on average colder by 20 K than the gas without ^13CO. This colder gas is also sampled by CN and C_2 molecules, the latter indicating gas kinetic temperatures of only 28 K, enough to facilitate an efficient charge exchange reaction that lowers the value of ^12CO/^13CO.



قيم البحث

اقرأ أيضاً

129 - Joseph A. Collins , 2009
We describe an ultraviolet spectroscopic survey of interstellar high-velocity cloud (HVC) absorption in the strong 1206.500 Angstrom line of Si III using the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Because the Si III l ine is 4-5 times stronger than O VI 1031.926, it provides a sensitive probe of ionized gas down to column densities N(Si III) = 5x10^11 cm^-2 at Si III equivalent width 10 mA. We detect high-velocity Si III over (91+/-4)% of the sky (53 of 58 sight lines), and 59% of the HVCs show negative LSR velocities. Per sight line, the mean HVC column density is <log N(SiIII)> = 13.19 +/- 0.45, while the mean for all 90 velocity components is 12.92 +/- 0.46. Lower limits due to Si III line saturation are included in this average, so the actual mean/median values are even higher. The Si III appears to trace an extensive ionized component of Galactic halo gas at temperatures 10^4.0 K to 10^4.5 K indicative of a cooling flow. Photoionization models suggest that typical Si III absorbers with 12.5 < log N(Si III) < 13.5 have total hydrogen column densities N(H) = 10^18 to 10^19 cm^-2 for gas of hydrogen density n(H) = 0.1 cm^(-3) and 10% solar metallicity. With typical neutral fractions N(HI)/N(H) = 0.01, these HVCs may elude even long duration 21-cm observations at Arecibo, the EVLA, and other radio facilities. However, if Si III is associated with higher density gas, n(H) > 1 cm^(-3), the corresponding neutral hydrogen could be visible in deep observations. This reservoir of ionized gas may contain 10^8 M_sun and produce a mass infall rate of 1 M_sun/yr to the Galactic disk.
Recent advances in laboratory spectroscopy lead to the claim of ionized Buckminsterfullerene (C60+) as the carrier of two diffuse interstellar bands (DIBs) in the near-infrared. However, irrefutable identification of interstellar C60+ requires a matc h between the wavelengths and the expected strengths of all absorption features detectable in the laboratory and in space. Here we present Hubble Space Telescope (HST) spectra of the region covering the C60+ 9348, 9365, 9428 and 9577 {AA} absorption bands toward seven heavily-reddened stars. We focus in particular on searching for the weaker laboratory C60+ bands, the very presence of which has been a matter for recent debate. Using the novel STIS-scanning technique to obtain ultra-high signal-to-noise spectra without contamination from telluric absorption that afflicted previous ground-based observations, we obtained reliable detections of the (weak) 9365, 9428 {AA} and (strong) 9577 {AA} C60+ bands. The band wavelengths and strength ratios are sufficiently similar to those determined in the latest laboratory experiments that we consider this the first robust identification of the 9428 {AA} band, and a conclusive confirmation of interstellar C60+.
Aims. We seek to understand how the 4.8 GHz formaldehyde absorption line is distributed in the MON R2, S156, DR17/L906, and M17/M18 regions. More specifically, we look for the relationship among the H2CO, 12CO, and 13CO spectral lines. Methods. The f our regions of MON R2 (60x90), S156 (50x70), DR17/L906 (40x60), and M17 /M18 (70x80)were observed for H2CO (beam 10), H110a recombination (beam 10), 6 cm continuum (beam 10), 12CO (beam 1), and 13CO (beam 1). We compared the H2CO,12CO,13CO, and continuum distributions, and also the spectra line parameters of H2CO,12CO, and 13CO. Column densities of H2CO,13CO, and H2 were also estimated. Results. We found out that the H2CO distribution is similar to the 12CO and the 13CO distributions on a large scale. The correlation between the 13 CO and the H2CO distributions is better than between the 12CO and H2CO distributions. The H2CO and the 13CO tracers systematically provide consistent views of the dense regions. T heir maps have similar shapes, sizes, peak positions, and molecular spectra and present similar centr al velocities and line widths. Such good agreement indicates that the H2CO and the 13CO arise from similar regions.
The giant elliptical galaxy M87 has been imaged over 30 consecutive days in 2001, 60 consecutive days in 2005-2006, and every 5 days over a 265 day span in 2016-2017 with the Hubble Space Telescope, leading to the detection of 137 classical novae thr oughout M87. We have identified 2134 globular clusters (GC) in M87 in these images, and carried out searches of the clusters for classical novae erupting in or near them. One GC CN was detected in the 2001 data, while zero novae were found during the 2005-2006 observations. Four candidate GC novae were (barely) detected in visible light during the 2016-2017 observations, but none of the four were seen in near-ultraviolet light, leading us to reject them. Combining these results with our detection of one M87 GC nova out of a total of 137 detected CN, we conclude that such novae may be overabundant relative to the field, but small number statistics dominate this (and all other) searches. A definitive determination of GC CN overabundance (or not) will require much larger samples which LSST should provide in the coming decade.
We present Hubble Space Telescope (HST) WFC3 UV and near-IR (nIR) imaging of 21 Superluminous Supernovae (SLSNe) host galaxies, providing a sensitive probe of star formation and stellar mass with the hosts. Comparing the photometric and morphological properties of these host galaxies with those of core collapse supernovae (CCSNe) and long-duration gamma-ray bursts (LGRBs), we find SLSN hosts are fainter and more compact at both UV and nIR wavelengths, in some cases we barely recover hosts with absolute magnitude around MV ~ -14. With the addition of ground based optical observations and archival results, we produce spectral energy distribution (SED) fits to these hosts, and show that SLSN hosts possess lower stellar mass and star formation rates. This is most pronounced for the hydrogen deficient Type-I SLSN hosts, although Type-II H-rich SLSN host galaxies remain distinct from the bulk of CCSNe, spanning a remarkably broad range of absolute magnitudes, with ~30% of SLSNe-II arising from galaxies fainter than Mn I R ~ -14. The detection of our faintest SLSN hosts increases the confidence that SLSNe-I hosts are distinct from those of LGRBs in star formation rate and stellar mass, and suggests that apparent similarities in metallicity may be due to the limited fraction of hosts for which emission line metallicity measurements are feasible. The broad range of luminosities of SLSN-II hosts is difficult to describe by metallicity cuts, and does not match the expectations of any reasonable UV-weighted luminosity function, suggesting additional environmental constraints are likely necessary to yield hydrogen rich SLSNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا