ترغب بنشر مسار تعليمي؟ اضغط هنا

Confirming interstellar C$_{60}^+$ using the Hubble Space Telescope

68   0   0.0 ( 0 )
 نشر من قبل Martin Cordiner PhD
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in laboratory spectroscopy lead to the claim of ionized Buckminsterfullerene (C60+) as the carrier of two diffuse interstellar bands (DIBs) in the near-infrared. However, irrefutable identification of interstellar C60+ requires a match between the wavelengths and the expected strengths of all absorption features detectable in the laboratory and in space. Here we present Hubble Space Telescope (HST) spectra of the region covering the C60+ 9348, 9365, 9428 and 9577 {AA} absorption bands toward seven heavily-reddened stars. We focus in particular on searching for the weaker laboratory C60+ bands, the very presence of which has been a matter for recent debate. Using the novel STIS-scanning technique to obtain ultra-high signal-to-noise spectra without contamination from telluric absorption that afflicted previous ground-based observations, we obtained reliable detections of the (weak) 9365, 9428 {AA} and (strong) 9577 {AA} C60+ bands. The band wavelengths and strength ratios are sufficiently similar to those determined in the latest laboratory experiments that we consider this the first robust identification of the 9428 {AA} band, and a conclusive confirmation of interstellar C60+.



قيم البحث

اقرأ أيضاً

The laboratory gas phase spectrum recently published by Campbell et al. has reinvigorated attempts to confirm the presence of the C$_{60}^+$ cation in the interstellar medium, thorough an analysis of the spectra of hot, reddened stars. This search is hindered by at least two issues that need to be addressed: (i) the wavelength range of interest is severely polluted by strong water- vapour lines coming from the Earths atmosphere; (ii) one of the major bands attributed to C$_{60}^+$, at 9633 AA, is blended with the stellar Mg{sc ii} line, which is susceptible to non-local-thermodynamic equilibrium effects in hot stellar atmospheres. Both these issues are here carefully considered here for the first time, based on high-resolution and high signal-to-noise ratio echelle spectra for 19 lines of sight. The result is that the presence of C$_{60}^+$ in interstellar clouds is brought into question.
128 - Joseph A. Collins , 2009
We describe an ultraviolet spectroscopic survey of interstellar high-velocity cloud (HVC) absorption in the strong 1206.500 Angstrom line of Si III using the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Because the Si III l ine is 4-5 times stronger than O VI 1031.926, it provides a sensitive probe of ionized gas down to column densities N(Si III) = 5x10^11 cm^-2 at Si III equivalent width 10 mA. We detect high-velocity Si III over (91+/-4)% of the sky (53 of 58 sight lines), and 59% of the HVCs show negative LSR velocities. Per sight line, the mean HVC column density is <log N(SiIII)> = 13.19 +/- 0.45, while the mean for all 90 velocity components is 12.92 +/- 0.46. Lower limits due to Si III line saturation are included in this average, so the actual mean/median values are even higher. The Si III appears to trace an extensive ionized component of Galactic halo gas at temperatures 10^4.0 K to 10^4.5 K indicative of a cooling flow. Photoionization models suggest that typical Si III absorbers with 12.5 < log N(Si III) < 13.5 have total hydrogen column densities N(H) = 10^18 to 10^19 cm^-2 for gas of hydrogen density n(H) = 0.1 cm^(-3) and 10% solar metallicity. With typical neutral fractions N(HI)/N(H) = 0.01, these HVCs may elude even long duration 21-cm observations at Arecibo, the EVLA, and other radio facilities. However, if Si III is associated with higher density gas, n(H) > 1 cm^(-3), the corresponding neutral hydrogen could be visible in deep observations. This reservoir of ionized gas may contain 10^8 M_sun and produce a mass infall rate of 1 M_sun/yr to the Galactic disk.
In 2015, Campbell et al. (Nature 523, 322) presented spectroscopic laboratory gas phase data for the fullerene cation, C$_{60}^+$, that coincide with reported astronomical spectra of two diffuse interstellar band (DIB) features at 9633 and 9578 AA. I n the following year additional laboratory spectra were linked to three other and weaker DIBs at 9428, 9366, and 9349 AA. The laboratory data were obtained using wavelength-dependent photodissociation spectroscopy of small (up to three) He-tagged C$_{60}^+-$He$_n$ ion complexes, yielding rest wavelengths for the bare C$_{60}^+$ cation by correcting for the He-induced wavelength shifts. Here we present an alternative approach to derive the rest wavelengths of the four most prominent C$_{60}^+$ absorption features, using high resolution laser dissociation spectroscopy of C$_{60}^+$ embedded in ultracold He droplets. Accurate wavelengths of the bare fullerene cation are derived based on linear wavelength shifts recorded for He$_n$C$_{60}^+$ species with $n$ up to 32. A careful analysis of all available data results in precise rest wavelengths (in air) for the four most prominent C$_{60}^+$ bands: 9631.9(1) AA, 9576.7(1) AA, 9427.5(1) AA, and 9364.9(1) AA. The corresponding band widths have been derived and the relative band intensity ratios are discussed.
We present deep Hubble Space Telescope imaging at the locations of four, potentially hostless, long-faded Type Ia supernovae (SNe Ia) in low-redshift, rich galaxy clusters that were identified in the Multi-Epoch Nearby Cluster Survey. Assuming a stee p faint-end slope for the galaxy cluster luminosity function ($alpha_d=-1.5$), our data includes all but $lesssim0.2%$ percent of the stellar mass in cluster galaxies ($lesssim0.005%$ with $alpha_d=-1.0$), a factor of 10 better than our ground-based imaging. Two of the four SNe Ia still have no possible host galaxy associated with them ($M_R>-9.2$), confirming that their progenitors belong to the intracluster stellar population. The third SNe Ia appears near a faint disk galaxy ($M_V=-12.2$) which has a relatively high probability of being a chance alignment. A faint, red, point source coincident with the fourth SN Ias explosion position ($M_V=-8.4$) may be either a globular cluster (GC) or faint dwarf galaxy. We estimate the local surface densities of GCs and dwarfs to show that a GC is more likely, due to the proximity of an elliptical galaxy, but neither can be ruled out. This faint host implies that the SN Ia rate in dwarfs or GCs may be enhanced, but remains within previous observational constraints. We demonstrate that our results do not preclude the use of SNe Ia as bright tracers of intracluster light at higher redshifts, but that it will be necessary to first refine the constraints on their rate in dwarfs and GCs with deep imaging for a larger sample of low-redshift, apparently hostless SNe Ia.
We measure the fraction of galaxy-galaxy mergers in two clusters at $zsim2$ using imaging and grism observations from the {it Hubble Space Telescope}. The two galaxy cluster candidates were originally identified as overdensities of objects using deep mid-infrared imaging and observations from the {it Spitzer Space Telescope}, and were subsequently followed up with HST/WFC3 imaging and grism observations. We identify galaxy-galaxy merger candidates using high resolution imaging with the WFC3 in the F105W, F125W, and F160W bands. Coarse redshifts for the same objects are obtained with grism observations in G102 for the $zsim1.6$ cluster (IRC0222A) and G141 for the $zsim2$ cluster (IRC0222B). Using visual classifications as well as a variety of selection techniques, we measure merger fractions of $11_{-3.2}^{+8.2}$ in IRC0222A and $18_{-4.5}^{+7.8}$ in IRC0222B. In comparison, we measure a merger fraction of $5.0_{-0.8}^{+1.1}%$ for field galaxies at $zsim2$. Our study indicates that the galaxy-galaxy merger fraction in clusters at $zsim2$ is enhanced compared the field population, but note that more cluster measurements at this epoch are needed to confirm our findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا