ترغب بنشر مسار تعليمي؟ اضغط هنا

Dose, exposure time, and resolution in Serial X-ray Crystallography

303   0   0.0 ( 0 )
 نشر من قبل Dmitri Starodub
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Starodub




اسأل ChatGPT حول البحث

The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available molecular and X-ray fluxes and molecular alignment. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of an electron density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate counting time and the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 0.7 nm should be possible with short exposures.



قيم البحث

اقرأ أيضاً

Diffraction unlimited super-resolution imaging critically depends on the switching of fluorophores between at least two states, often induced using intense laser light and special buffers. The high illumination power or UV light required for appropri ate blinking kinetics is currently hindering live-cell experiments. Recently, so-called self-blinking dyes that switch spontaneously between an open, fluorescent on-state and a closed colorless off-state were introduced. Here we exploit the synergy between super-resolution optical fluctuation imaging (SOFI) and spontaneously switching fluorophores for 2D functional and for volumetric imaging. SOFI tolerates high labeling densities, on-time ratios, and low signal-to-noise by analyzing higher-order statistics of a few hundred to thousand frames of stochastically blinking fluorophores. We demonstrate 2D imaging of fixed cells with a uniform resolution up to 50-60 nm in 6th order SOFI and characterize changing experimental conditions. We extend multiplane cross-correlation analysis to 4th order using biplane and 8-plane volumetric imaging achieving up to 29 (virtual) planes. The low laser excitation intensities needed for self-blinking SOFI are ideal for live-cell imaging. We show proof-of-principal time-resolved imaging by observing slow membrane movements in cells. Self-blinking SOFI provides a route for easy-to-use 2D and 3D high-resolution functional imaging that is robust against artefacts and suitable for live-cell imaging.
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the universal application of supe r-resolution microscopy is not feasible. In this paper, we propose and demonstrate a new kind of super-resolution fluorescence microscopy that can be easily implemented and requires neither additional hardware nor complex post-processing. The microscopy is based on the principle of stepwise optical saturation (SOS), where $M$ steps of raw fluorescence images are linearly combined to generate an image with a $sqrt{M}$-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends resolution by a factor of $1.4$ beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples.
Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all thre e dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.
Thick biological tissues give rise to not only the scattering of incoming light waves, but also aberrations of the remaining unscattered waves. Due to the inability of existing optical imaging methodologies to overcome both of these problems simultan eously, imaging depth at the sub- micron spatial resolution has remained extremely shallow. Here we present an experimental approach for identifying and eliminating aberrations even in the presence of strong multiple light scattering. For time-gated complex-field maps of reflected waves taken over various illumination channels, we identify two sets of aberration correction maps, one for the illumination path and one for the reflection path, that can preferentially accumulate the unscattered signal waves over the multiple-scattered waves. By performing closed-loop optimization for forward and phase- conjugation processes, we demonstrated a spatial resolution of 600 nm up to the unprecedented imaging depth of 7 scattering mean free paths.
Low-dose ionizing radiation may induce far-reaching consequences in human, especially regarding intrauterine development. Many studies have documented that the risks of in utero irradiation remain controversial and no effect is reported at doses belo w 50 mGy. Animal models are often used to clarify the non-fully understood impact of intrauterine irradiation and allow the manipulation of several experimental setups, making possible the analysis of a wide range of end points. We investigated the impact of in utero low-dose X-ray irradiation on postnatal development in rat offspring through a set of well-established behavioral parameters and weight gain. To investigate the hypothesis of postnatal behavioral and physiological alterations due to prenatal low-dose ionizing radiation we exposed pregnant Wistar to 15 mGy of X-rays on gestational days 8 and 15 and control mothers. This low-dose value into diagnostic range can be achieved in a single radiological exam. Four male animals were select from each litter. At infant age, eye-opening test and negative geotaxis tests were performed. Animals were tested at postnatal ages 30 and 70 days in open field, elevated plus-maze, and hole board tests. We evaluated the weight gain of all animals throughout the experiment. The results presented differences between irradiated and non-irradiated animals. Exposed animals presented lower weight gain in adult life, impairment in central nervous system since infant phase, behavioral alterations persisting into later life, and motor coordination impairment. Effects at doses under 100 mGy have not been reported, however, the present study demonstrate that 15 mGy intrauterine exposure was able to generate deleterious effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا