ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution models of solar granulation: the 2D case

27   0   0.0 ( 0 )
 نشر من قبل Herbert Muthsam
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using grid refinement, we have simulated solar granulation in 2D. The refined region measures 1.97*2.58 Mm (vertical*horizontal). Grid spacing there is 1.82*2.84 km. The downflows exhibit strong Kelvin-Helmholtz instabilities. Below the photosphere, acoustic pulses are generated. They proceed laterally (in some cases distances of at least the size of our refined domain) and may be enhanced when transversing downflows) as well as upwards where, in the photosphere they contribute significantly to turbulence (velocity gradients, etc.) The acoustic pulses are ubiquitous in that at any time several of them are seen in our high-resolution domain. Their possible contributions to p-mode excitation or heating of the chromosphere needs to be investigated.

قيم البحث

اقرأ أيضاً

Recent numerical and theoretical considerations have shown that low-degree acoustic modes in rapidly rotating stars follow an asymptotic formula and recent observations of pulsations in rapidly rotating delta Scuti stars seem to match these expectati ons. However, a key question is whether strong gradients or discontinuities can adversely affect this pattern to the point of hindering its identification. Other important questions are how rotational splittings are affected by the 2D rotation profiles expected from baroclinic effects and whether it is possible to probe the rotation profile using these splittings. Accordingly, we numerically calculate pulsation modes in continuous and discontinuous rapidly rotating models produced by the 2D ESTER (Evolution STEllaire en Rotation) code. This spectral multi-domain code self-consistently calculates the rotation profile based on baroclinic effects and allows us to introduce discontinuities without loss of numerical accuracy. Pulsations are calculated using an adiabatic version of the Two-dimensional Oscillation Program (TOP) code. The variational principle is used to confirm the high accuracy of the pulsation frequencies and to derive an integral formula that closely matches the generalised rotational splittings, except when modes are involved in avoided crossings. This potentially allows us to probe the the rotation profile using inverse theory. Acoustic glitch theory, applied along the island mode orbit deduced from ray dynamics, can correctly predict the periodicity of the glitch frequency pattern produced by a discontinuity or the Gamma1 dip related to the He II ionisation zone in some of the models. The asymptotic frequency pattern remains sufficiently well preserved to potentially allow its detection in observed stars.
60 - A.A. Pevtsov 2016
We employ time sequences of images observed with a G-band filter (4305{AA}) by the Solar Optical Telescope (SOT) on board of Hinode spacecraft at different latitude along solar central me-ridian to study vorticity of granular flows in quiet Sun areas during deep minimum of solar activity. Using a feature correlation tracking (FCT) technique, we calculate the vorticity of granular-scale flows. Assuming the known pattern of vertical flows (upward in granules and downward in inter-granular lanes), we infer the sign of kinetic helicity of these flows. We show that the kinetic helicity of granular flows and intergranular vortices exhibits a weak hemispheric preference, which is in agreement with the action of the Coriolis force. This slight hemispheric sign asymmetry, however, is not statistically significant given large scatter in the average vorticity. The sign of the current he-licity density of network magnetic fields computed using full disk vector magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) does not show any hemispheric preference. The combination of these two findings suggests that the photospheric dynamo operating on the scale of granular flows is non-helical in nature.
46 - T. Oba , Y. Iida , T. Shimizu 2020
Gas convection is observed in the solar photosphere as the granulation, i.e., having highly time-dependent cellular patterns, consisting of numerous bright cells called granules and dark surrounding-channels called intergranular lanes. Many efforts h ave been made to characterize the granulation, which may be used as an energy source for various types of dynamical phenomena. Although the horizontal gas flow dynamics in intergranular lanes may play a vital role, but they are poorly understood. This is because the Doppler signals can be obtained only at the solar limb, where the signals are severely degraded by a foreshortening effect. To reduce such a degradation, we use Hinodes spectroscopic data, which are free from a seeing-induced image degradation, and improve its image quality by correcting for straylight in the instruments. The dataset continuously covers from the solar disk to the limb, providing a multidirectional line-of-sight (LOS) diagnosis against the granulation. The obtained LOS flow-field variation across the disk indicates a horizontal flow speed of 1.8-2.4 km/s. We also derive the spatial distribution of the horizontal flow speed, which is 1.6 km/s in granules and 1.8 km/s in intergranular lanes, and where the maximum speed is inside intergranular lanes. This result newly suggests the following sequence of horizontal flow: A hot rising gas parcel is strongly accelerated from the granular center, even beyond the transition from the granules to the intergranular lanes, resulting in the fastest speed inside the intergranular lanes, and the gas may also experience decelerations in the intergranular lane.
The magnetic and convective nature of the Suns photosphere provides a unique platform from which generated waves can be modelled, observed, and interpreted across a wide breadth of spatial and temporal scales. As oscillations are generated in-situ or emerge through the photospheric layers, the interplay between the rapidly evolving densities, temperatures, and magnetic field strengths provides dynamic evolution of the embedded wave modes as they propagate into the tenuous solar chromosphere. A focused science team was assembled to discuss the current challenges faced in wave studies in the lower solar atmosphere, including those related to spectropolarimetry and radiative transfer in the optically thick regions. Following the Theo Murphy international scientific meeting held at Chicheley Hall during February 2020, the scientific team worked collaboratively to produce 15 independent publications for the current Special Issue, which are introduced here. Implications from the current research efforts are discussed in terms of upcoming next-generation observing and high performance computing facilities.
We present theoretical predictions for the free-free emission at cm wavelengths obtained from photoevaporation and MHD wind disk models adjusted to the case of the TW Hydrae young stellar object. For this system, disk photoevaporation with heating du e to the high-energy photons from the star has been proposed as a possible mechanism to open the gap observed in the dust emission with ALMA. We show that the photoevaporation disk model predicts a radial profile for the free-free emission that is made of two main spatial components, one originated from the bound disk atmosphere at 0.5-1 au from the star, and another more extended component from the photoevaporative wind at larger disk radii. We also show that the stellar X-ray luminosity has a significant impact on both these components. The predicted radio emission from the MHD wind model has a smoother radial distribution which extends to closer distances to the star than the photoevaporation case. We also show that a future radio telescope such as the textit{Next Generation Very Large Array} (ngVLA) would have enough sensitivity and angular resolution to spatially resolve the main structures predicted by these models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا