ﻻ يوجد ملخص باللغة العربية
The starburst galaxy M82 contains two ultraluminous X-ray sources (ULXs), CXOM82 J095550.2+694047 (=X41.4+60) and CXOM82 J095551.1+694045 (=X42.3+59), which are unresolved by XMM-Newton. We revisited the two XMM-Newton observations of M82 and analyzed the surface brightness profiles using the known Chandra source positions. We show that the quasi-periodic oscillations (QPOs) detected with XMM-Newton originate from X41.4+60, the brightest X-ray source in M82. Correcting for the contributions of the unresolved sources, the QPO at a frequency of 55.8+/-1.3 mHz on 2001 May 06 had a fractional rms amplitude of 32%, and the QPO at 112.9+/-1.3 mHz on 2004 April 21 had an amplitude of 21%. The QPO frequency may possibly be correlated with the source flux, similar to the type C QPOs in XTE 1550-564 and GRS 1915+105, but at luminosities two orders of magnitude higher. X42.3+59, the second brightest source in M82, displayed a strikingly high flux of 1.4E-11 ergs/cm^2/s in the 2-10 keV band on 2001 May 6. A seven-year light curve of X42.3+59 shows extreme variability over a factor of 1000; the source is not detected in several Chandra observations. This transient behavior suggests accretion from an unstable disk. If the companion star is massive, as might be expected in the young stellar environment, then the compact object would likely be an IMBH.
We detected a major X-ray outburst from M82 with a duration of 79 days, an average flux of 5E-11 erg cm^-2 s^-1 in the 2-10 keV band, and strong variability. The X-ray spectrum remained hard throughout the outburst. We obtained a Chandra observation
Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a
We report on the discovery of a new, transient ultraluminous X-ray source (ULX) in the galaxy NGC 7090. This new ULX, which we refer to as NGC 7090 ULX3, was discovered via monitoring with $Swift$ during 2019-20, and to date has exhibited a peak lumi
We report the discovery of the transient ultraluminous X-ray source (ULX) CXOU J122602.3+125951 (hereafter M86 tULX-1), located 352 (19 kpc) northwest of the centre of the giant elliptical galaxy M86 (NGC 4406) in the Virgo Cluster. The spectrum of M
Ultra-Luminous X-ray sources are thought to be accreting black holes that might host Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies, even though a firm detection (as a class) is still missing. The brightest ULX in M82