ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-Periodic Oscillations and energy spectra from the two brightest Ultra-Luminous X-ray sources in M82

143   0   0.0 ( 0 )
 نشر من قبل Maria D. Caballero-Garcia Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-Luminous X-ray sources are thought to be accreting black holes that might host Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies, even though a firm detection (as a class) is still missing. The brightest ULX in M82 (M82 X-1) is probably one of the best candidates to host an IMBH. In this work we analyzed the data of the recent release of observations obtained from M82 X-1 taken by XMM-Newton. We performed a study of the timing and spectral properties of the source. We report on the detection of (46+-2) mHz Quasi-Periodic Oscillations (QPOs) in the power density spectra of two observations. A comparison of the frequency of these high-frequency QPOs with previous detections supports the 1:2:3 frequency distribution as suggested in other studies. We discuss the implications if the (46+-2) mHz QPO detected in M82 X-1 is the fundamental harmonic, in analogy with the High-Frequency QPOs observed in black hole binaries. For one of the observations we have detected for the first time a QPO at 8 mHz (albeit at a low significance), that coincides with a hardening of the spectrum. We suggest that the QPO is a milli-hertz QPO originating from the close-by transient ULX M82 X-2, with analogies to the Low-Frequency QPOs observed in black hole binaries.



قيم البحث

اقرأ أيضاً

Many upcoming surveys, particularly in the radio and optical domains, are designed to probe either the temporal and/or the spatial variability of a range of astronomical objects. In the light of these high resolution surveys, we review the subject of ultra-luminous X-ray (ULX) sources, which are thought to be accreting black holes for the most part. We also discuss the sub-class of ULXs known as the hyper-luminous X-ray sources, which may be accreting intermediate mass black holes. We focus on some of the open questions that will be addressed with the new facilities, such as the mass of the black hole in ULXs, their temporal variability and the nature of the state changes, their surrounding nebulae and the nature of the region in which ULXs reside.
The nature of ultra-luminous X-ray sources (ULXs), which are off-nuclear extragalactic X-ray sources that exceed the Eddington luminosity for a stellar-mass black hole, is still largely unknown. They might be black hole X-ray binaries in a super-Eddi ngton accretion state, possibly with significant beaming of their emission, or they might harbor a black hole of intermediate mass (10^2 to 10^5 solar masses). Due to the enormous amount of energy radiated, ULXs can have strong interactions with their environment, particularly if the emission is not beamed and if they host a massive black hole. We present early results of a project that uses archival Herschel infrared observations of galaxies hosting bright ULXs in order to constrain the nature of the environment surrounding the ULXs and possible interactions. We already observe a spatial correlation between ULXs and dense clouds of cold material, that will be quantified in subsequent work. Those observations will allow us to test the similarities with the environment of Galactic high mass X-ray binaries. This project will also shed light on the nature of the host galaxies, and the possible factors that could favor the presence of a ULX in a galaxy.
It is now widely accepted that most ultraluminous X-ray sources (ULXs) are binary systems whose large (above $10^{39}$ erg s$^{-1}$) apparent luminosities are explained by super-Eddington accretion onto a stellar-mass compact object. Many of the ULXs , especially those containing magnetized neutron stars, are highly variable; some exhibit transient behaviour. Large luminosities might imply large accretion discs that could be therefore prone to the thermal-viscous instability known to drive outbursts of dwarf novae and low-mass X-ray binary transient sources. The aim of this paper is to extend and generalize the X-ray transient disc-instability model to the case of large (outer radius larger than $10^{12}$ cm) accretion discs and apply it to the description of systems with super-Eddington accretion rates at outburst and, in some cases, super-Eddington mass transfer rates. We have used our disc-instability-model code to calculate the time evolution of the accretion disc and the outburst properties. We show that, provided that self-irradiation of the accretion disc is efficient even when the accretion rate exceeds the Eddington value, possibly due to scattering back of the X-ray flux emitted by the central parts of the disc on the outer portions of the disc, heating fronts can reach the discs outer edge generating high accretion rates. We also provide analytical approximations for the observable properties of the outbursts. We have reproduced successfully the observed properties of galactic transients with large discs, such as V404 Cyg, as well as some ULXs such as M51 XT-1. Our model can reproduce the peak luminosity and decay time of ESO 243-39 HLX-1 outbursts if the accretor is a neutron star. Observational tests of our predicted relations between the outburst duration and decay time with peak luminosity would be most welcome.
In the extragalactic sky, microquasars and ultra-luminous X-ray sources (ULXs) are known as energetic compact objects locating at off-nucleus positions in galaxies. Some of these objects are associated with expanding bubbles with a velocity of 80-250 ${rm km~s^{-1}}$. We investigate the shock acceleration of particles in those expanding nebulae. The nebulae having fast expansion velocity $gtrsim120~{rm km~s^{-1}}$ are able to accelerate cosmic rays up to $sim100$ TeV. If 10% of the shock kinetic energy goes into particle acceleration, powerful nebulae such as the microquasar S26 in NGC 7793 would emit gamma rays up to several tens TeV with a photon index of $sim2$. These nebulae will be good targets for future Cherenkov Telescope Array observations given its sensitivity and angular resolution. They would also contribute to $sim7$% of the unresolved cosmic gamma-ray background radiation at $ge0.1~{rm GeV}$. In contrast, particle acceleration in slowly expanding nebulae $lesssim120~{rm km~s^{-1}}$ would be less efficient due to ion-neutral collisions and result in softer spectra at $gtrsim10$ GeV.
Low-metallicity (Z <~ 0.05 Zsun) massive (>~40 Msun) stars might end their life by directly collapsing into massive black holes (BHs, 30 <~ m_BH/Msun <~ 80). More than ~10^5 massive BHs might have been generated via this mechanism in the metal-poor r ing galaxy Cartwheel, during the last ~10^7 yr. We show that such BHs might power most of the ultra-luminous X-ray sources (ULXs) observed in the Cartwheel. We also consider a sample of ULX-rich galaxies and we find a possible anti-correlation between the number of ULXs per galaxy and the metallicity in these galaxies. However, the data are not sufficient to draw any robust conclusions about this anti-correlation, and further studies are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا