ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Stellar Components in the Halo of the Milky Way

224   0   0.0 ( 0 )
 نشر من قبل Timothy C. Beers
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Carollo




اسأل ChatGPT حول البحث

The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo -- that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.

قيم البحث

اقرأ أيضاً

128 - Alis J. Deason 2019
We measure the total stellar halo luminosity using red giant branch (RGB) stars selected from Gaia data release 2. Using slices in magnitude, colour and location on the sky, we decompose RGB stars belonging to the disc and halo by fitting 2-dimension al Gaussians to the Galactic proper motion distributions. The number counts of RGB stars are converted to total stellar halo luminosity using a suite of isochrones weighted by age and metallicity, and by applying a volume correction based on the stellar halo density profile. Our method is tested and calibrated using Galaxia and N-body models. We find a total luminosity (out to 100 kpc) of L_halo = 7.9 +/- 2.0 x 10^8 L_Sun excluding Sgr, and L_halo = 9.4 +/- 2.4 x 10^8 L_Sun including Sgr. These values are appropriate for our adopted stellar halo density profile and metallicity distribution, but additional systematics related to these assumptions are quantified and discussed. Assuming a stellar mass-to-light ratio appropriate for a Kroupa initial mass function (M*/L = 1.5), we estimate a stellar halo mass of M*_halo = 1.4 +/- 0.4 x 10^9 M_Sun. This mass is larger than previous estimates in the literature, but is in good agreement with the emerging picture that the (inner) stellar halo is dominated by one massive dwarf progenitor. Finally, we argue that the combination of a ~10^9 M_Sun mass and an average metallicity of <[Fe/H]> ~ -1.5 for the Galactic halo points to an ancient (~10 Gyr) merger event.
In the $Gaia$ era stellar kinematics are extensively used to study Galactic halo stellar populations, to search for halo structures, and to characterize the interface between the halo and hot disc populations. We use distribution function-based model s of modern datasets with 6D phase space data to qualitatively describe a variety of kinematic spaces commonly used in the study of the Galactic halo. Furthermore, we quantitatively assess how well each kinematic space can separate radially anisotropic from isotropic halo populations. We find that scaled action space (the ``action diamond) is superior to other commonly used kinematic spaces at this task. We present a new, easy to implement selection criterion for members of the radially-anisotropic $Gaia$-Enceladus merger remnant, which we find achieves a sample purity of 82 per cent in our models with respect to contamination from the more isotropic halo. We compare this criterion to literature criteria, finding that it produces the highest purity in the resulting samples, at the expense of a modest reduction in completeness. We also show that selection biases that underlie nearly all contemporary spectroscopic datasets can noticeably impact the $E-L_{z}$ distribution of samples in a manner that may be confused for real substructure. We conclude by providing recommendations for how authors should use stellar kinematics in the future to study the Galactic stellar halo.
299 - G.C. Myeong 2019
The Gaia Sausage is the major accretion event that built the stellar halo of the Milky Way galaxy. Here, we provide dynamical and chemical evidence for a second substantial accretion episode, distinct from the Gaia Sausage. The Sequoia Event provided the bulk of the high energy retrograde stars in the stellar halo, as well as the recently discovered globular cluster FSR 1758. There are up to 6 further globular clusters, including $omega$~Centauri, as well as many of the retrograde substructures in Myeong et al. (2018), associated with the progenitor dwarf galaxy, named the Sequoia. The stellar mass in the Sequoia galaxy is $sim 5 times 10^{7} M_odot$, whilst the total mass is $sim 10^{10} M_odot$, as judged from abundance matching or from the total sum of the globular cluster mass. Although clearly less massive than the Sausage, the Sequoia has a distinct chemo-dynamical signature. The strongly retrograde Sequoia stars have a typical eccentricity of $sim0.6$, whereas the Sausage stars have no clear net rotation and move on predominantly radial orbits. On average, the Sequoia stars have lower metallicity by $sim 0.3$ dex and higher abundance ratios as compared to the Sausage. We conjecture that the Sausage and the Sequoia galaxies may have been associated and accreted at a comparable epoch.
In 1998 several papers claim the detection of an ubiquitous gaseous phase within the Galactic halo. Here we like to focus on the detections of X-ray emitting gas within the Galactic halo as well as the discovery of a pervasive neutral Galactic halo g as. We discuss critically the major differences between the recent publications as well as the limitations of the analyses.
We study stellar-halo formation using six Milky Way-mass galaxies in FIRE-2 cosmological zoom simulations. We find that $5-40%$ of the outer ($50-300$ kpc) stellar halo in each system consists of $textit{in-situ}$ stars that were born in outflows fro m the main galaxy. Outflow stars originate from gas accelerated by super-bubble winds, which can be compressed, cool, and form co-moving stars. The majority of these stars remain bound to the halo and fall back with orbital properties similar to the rest of the stellar halo at $z=0$.In the outer halo, outflow stars are more spatially homogeneous, metal rich, and alpha-element-enhanced than the accreted stellar halo. At the solar location, up to $sim 10 %$ of our kinematically-identified halo stars were born in outflows; the fraction rises to as high as $sim 40%$ for the most metal-rich local halo stars ([Fe/H] $> -0.5$). We conclude that the Milky Way stellar halo could contain local counterparts to stars that are observed to form in molecular outflows in distant galaxies. Searches for such a population may provide a new, near-field approach to constraining feedback and outflow physics. A stellar halo contribution from outflows is a phase-reversal of the classic halo formation scenario of Eggen, Lynden-Bell $&$ Sandange, who suggested that halo stars formed in rapidly $textit{infalling}$ gas clouds. Stellar outflows may be observable in direct imaging of external galaxies and could provide a source for metal-rich, extreme velocity stars in the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا