ﻻ يوجد ملخص باللغة العربية
The Gaia Sausage is the major accretion event that built the stellar halo of the Milky Way galaxy. Here, we provide dynamical and chemical evidence for a second substantial accretion episode, distinct from the Gaia Sausage. The Sequoia Event provided the bulk of the high energy retrograde stars in the stellar halo, as well as the recently discovered globular cluster FSR 1758. There are up to 6 further globular clusters, including $omega$~Centauri, as well as many of the retrograde substructures in Myeong et al. (2018), associated with the progenitor dwarf galaxy, named the Sequoia. The stellar mass in the Sequoia galaxy is $sim 5 times 10^{7} M_odot$, whilst the total mass is $sim 10^{10} M_odot$, as judged from abundance matching or from the total sum of the globular cluster mass. Although clearly less massive than the Sausage, the Sequoia has a distinct chemo-dynamical signature. The strongly retrograde Sequoia stars have a typical eccentricity of $sim0.6$, whereas the Sausage stars have no clear net rotation and move on predominantly radial orbits. On average, the Sequoia stars have lower metallicity by $sim 0.3$ dex and higher abundance ratios as compared to the Sausage. We conjecture that the Sausage and the Sequoia galaxies may have been associated and accreted at a comparable epoch.
The last two years have seen widespread acceptance of the idea that the Milky Way halo was largely created in an early (8-10 Gyr ago) and massive ($> 10^{10} M_odot$) merger. The roots of this idea pre-date the Gaia mission, but the exquisite proper
We present a new theoretical population synthesis model (the Galaxy Model) to examine and deal with large amounts of data from surveys of the Milky Way and to decipher the present and past structure and history of our own Galaxy. We assume the Galaxy
The standard cosmological model ($Lambda$-CDM) predicts that galaxies are built through hierarchical assembly on cosmological timescales$^{1,2}$. The Milky Way, like other disc galaxies, underwent violent mergers and accretion of small satellite gala
We measure the total stellar halo luminosity using red giant branch (RGB) stars selected from Gaia data release 2. Using slices in magnitude, colour and location on the sky, we decompose RGB stars belonging to the disc and halo by fitting 2-dimension
In the $Gaia$ era stellar kinematics are extensively used to study Galactic halo stellar populations, to search for halo structures, and to characterize the interface between the halo and hot disc populations. We use distribution function-based model