ترغب بنشر مسار تعليمي؟ اضغط هنا

Practical quantum key distribution over 60 hours at an optical fiber distance of 20km using weak and vacuum decoy pulses for enhanced security

34   0   0.0 ( 0 )
 نشر من قبل James Dynes
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental one-way decoy pulse quantum key distribution running continuously for 60 hours is demonstrated over a fiber distance of 20km. We employ a decoy protocol which involves one weak decoy pulse and a vacuum pulse. The obtained secret key rate is on average over 10kbps. This is the highest rate reported using this decoy protocol over this fiber distance and duration.

قيم البحث

اقرأ أيضاً

Quantum key distribution establishes a secret string of bits between two distant parties. Of concern in weak laser pulse schemes is the especially strong photon number splitting attack by an eavesdropper, but the decoy state method can detect this at tack with current technology, yielding a high rate of secret bits. In this Letter, we develop rigorous security statements in the case of finite statistics with only a few decoy states, and we present the results of simulations of an experimental setup of a decoy state protocol that can be simply realized with current technology.
Information-theoretical security of quantum key distribution (QKD) has been convincingly proven in recent years and remarkable experiments have shown the potential of QKD for real world applications. Due to its unique capability of combining high key rate and security in a realistic finite-size scenario, the efficient version of the BB84 QKD protocol endowed with decoy states has been subject of intensive research. Its recent experimental implementation finally demonstrated a secure key rate beyond 1 Mbps over a 50 km optical fiber. However the achieved rate holds under the restrictive assumption that the eavesdropper performs collective attacks. Here, we review the protocol and generalize its security. We exploit a map by Ahrens to rigorously upper bound the Hypergeometric distribution resulting from a general eavesdropping. Despite the extended applicability of the new protocol, its key rate is only marginally smaller than its predecessor in all cases of practical interest.
Quantum cryptography or, more precisely, quantum key distribution (QKD), is one of the advanced areas in the field of quantum technologies. The confidentiality of keys distributed with the use of QKD protocols is guaranteed by the fundamental laws of quantum mechanics. This paper is devoted to the decoy state method, a countermeasure against vulnerabilities caused by the use of coherent states of light for QKD protocols whose security is proved under the assumption of single-photon states. We give a formal security proof of the decoy state method against all possible attacks. We compare two widely known attacks on multiphoton pulses: photon-number splitting and beam splitting. Finally, we discuss the equivalence of polarization and phase coding.
Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdroppers power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).
We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure k ey rates are the highest reported so far at all fibre distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا