ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak phase information from the color suppressed B_d^0 -> D^{*0} K^{*0} modes

50   0   0.0 ( 0 )
 نشر من قبل Dr. Rukmani Mohanta
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The decay channels $B_d^0 to D^{*0} K^{*0}$ are investigated for extracting weak $CKM$ phase information. These channels are described by color-suppressed tree diagrams only and are free from penguin contributions. The branching ratios for these channels are found to be $sim cal O $ $(10^{-5} - 10^{-6})$ which can be measured at the currently running $B$ factories. The method presented here may be well-suited to determine the phase $gamma$.

قيم البحث

اقرأ أيضاً

94 - K. Arms , et al. 2003
Using a data sample corresponding to 13.7 fb^-1 collected with the CLEO II and II.V detectors, we report new branching fraction measurements for two Cabibbo-suppressed decay modes of the D^+ meson: Br(D^+ to pi^+ pi^0) = (1.3 +/- 0.2) x 10^-3 and Br( D^+ to bar{K}^0 K^+) = (5.2 +/- 0.6) x 10^-3 which are significant improvements over past measurements. The errors include statistical and systematical uncertainties as well as the uncertainty in the absolute D^+ branching fraction scale. We also set the first 90% confidence level upper limit on the branching fraction of the doubly Cabibbo-suppressed decay mode Br(D^+ to K^+ pi^0) < 4.2 x 10^-4.
Using a data sample of $e^+e^-$ collision data corresponding to an integrated luminosity of 2.93 $fb^{-1}$ collected with the BESIII detector at a center-of-mass energy of $sqrt{s}= 3.773~GeV$,we search for the singly Cabibbo-suppressed decays $D^{0} topi^{0}pi^{0}pi^{0}$, $pi^{0}pi^{0}eta$, $pi^{0}etaeta$ and $etaetaeta$ using the double tag method. The absolute branching fractions are measured to be $mathcal{B}(D^{0}topi^{0}pi^{0}pi^{0}) = (2.0 pm 0.4 pm 0.3)times 10^{-4}$, $mathcal{B}(D^{0}topi^{0}pi^{0}eta) = (3.8 pm 1.1 pm 0.7)times 10^{-4}$ and $mathcal{B}(D^{0}topi^{0}etaeta) = (7.3 pm 1.6 pm 1.5)times 10^{-4}$ with the statistical significances of $4.8sigma$, $3.8sigma$ and $5.5sigma$, respectively, where the first uncertainties are statistical and the second ones systematic. No significant signal of $D^{0}toetaetaeta$ is found, and the upper limit on its decay branching fraction is set to be $mathcal{B}(D^{0}toetaetaeta) < 1.3 times 10^{-4}$ at the $90%$ confidence level.
The first observation of the decay $B^0 rightarrow D^0 overline{D}{}^0 K^+ pi^-$ is reported using proton-proton collision data corresponding to an integrated luminosity of 4.7 $mathrm{fb}^{-1}$ collected by the LHCb experiment in 2011, 2012 and 2016 . The measurement is performed in the full kinematically allowed range of the decay outside of the $D^{*-}$ region. The ratio of the branching fraction relative to that of the control channel $B^0 rightarrow D^{*-} D^0 K^+$ is measured to be $mathcal{R} = (14.2 pm 1.1 pm 1.0)%$, where the first uncertainty is statistical and the second is systematic. The absolute branching fraction of $B^0 rightarrow D^0 overline{D}{}^0 K^+ pi^-$ decays is thus determined to be $mathcal{B}(B^0 rightarrow D^0 overline{D}{}^0 K^+ pi^-) = (3.50 pm 0.27 pm 0.26 pm 0.30) times 10^{-4}$, where the third uncertainty is due to the branching fraction of the control channel. This decay mode is expected to provide insights to spectroscopy and the charm-loop contributions in rare semileptonic decays.
We present an observation and rate measurement of the decay D0 -> K+pi-pi0 produced in 9/fb of e+e- collisions near the Upsilon(4S) resonance. The signal is inconsistent with an upward fluctuation of the background by 4.9 standard deviations. We meas ured the rate of D0 -> K+pi-pi0 normalized to the rate of D0bar -> K+pi-pi0 to be 0.0043 +0.0011 -0.0010 (stat) +/- 0.0007 (syst). This decay can be produced by doubly-Cabibbo-suppressed decays or by the D0 evolving into a D0bar through mixing, followed by a Cabibbo-favored decay to K+pi-pi0. We also found the CP asymmetry A=(8 +25 -22)% to be consistent with zero.
Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $mathrm{fb}^{-1}$ collected with the BESIII detector at $sqrt{s}=3.773 mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}to K^+ K_S^0 pi^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1pm2.6pm4.2)%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $mathcal{B}(D^+to K^+ K_S^0 pi^0)$ measured by BESIII, we obtain $mathcal{B}(D^+to K^*(892)^+ K_S^0)=(8.69pm0.40pm0.64pm0.51)times10^{-3}$, where the third uncertainty is due to the branching fraction $mathcal{B}(D^+to K^+ K_S^0 pi^0)$. The precision of this result is significantly improved compared to the previous measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا