ترغب بنشر مسار تعليمي؟ اضغط هنا

The extended structure of the remote cluster B514 in M31. Detection of extra-tidal stars

31   0   0.0 ( 0 )
 نشر من قبل Luciana Federici
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the density profile of the remote M31 globular cluster B514, obtained from HST/ACS observations. Coupling the analysis of the distribution of the integrated light with star counts we can reliably follow the profile of the cluster out to r~35, corresponding to ~130pc. The profile is well fitted, out to ~15 core radii, by a King Model having C=1.65. With an estimated core radius r_c=0.38, this corresponds to a tidal radius of r_t~17 (~65pc). We find that both the light and the star counts profiles show a departure from the best fit King model for r>~8 - as a surface brightness excess at large radii, and the star counts profile shows a clear break in correspondence of the estimated tidal radius. Both features are interpreted as the signature of the presence of extratidal stars around the cluster. We also show that B514 has a half-light radius significantly larger than ordinary globular clusters of the same luminosity. In the M_V vs. log r_h plane, B514 lies in a region inhabited by peculiar clusters, like Omega Cen, G1, NGC2419 and others, as well as by the nuclei of dwarf elliptical galaxies.

قيم البحث

اقرأ أيضاً

The Quintuplet star cluster is one of only three known young ($<10$ Myr) massive (M $>10^4$ M$_odot$) clusters within $sim100$ pc of the Galactic Center. In order to explore star cluster formation and evolution in this extreme environment, we analyze the Quintuplets dynamical structure. Using the HST WFC3-IR instrument, we take astrometric and photometric observations of the Quintuplet covering a $120times120$ field-of-view, which is $19$ times larger than those of previous proper motion studies of the Quintuplet. We generate a catalog of the Quintuplet region with multi-band, near-infrared photometry, proper motions, and cluster membership probabilities for $10,543$ stars. We present the radial density profile of $715$ candidate Quintuplet cluster members with $Mgtrsim4.7$ M$_odot$ out to $3.2$ pc from the cluster center. A $3sigma$ lower limit of $3$ pc is placed on the tidal radius, indicating the lack of a tidal truncation within this radius range. Only weak evidence for mass segregation is found, in contrast to the strong mass segregation found in the Arches cluster, a second and slightly younger massive cluster near the Galactic Center. It is possible that tidal stripping hampers a mass segregation signature, though we find no evidence of spatial asymmetry. Assuming that the Arches and Quintuplet formed with comparable extent, our measurement of the Quintuplets comparatively large core radius of $0.62^{+0.10}_{-0.10}$ pc provides strong empirical evidence that young massive clusters in the Galactic Center dissolve on a several Myr timescale.
A rich harvest of RR Lyrae stars has been identified for the first time in B514, a metal-poor ([Fe/H] = 1.95 +/- 0.10 dex) globular cluster of the Andromeda galaxy (M31), based on Hubble Space Telescope Wide Field Planetary Camera 2 and Advanced Came ra for Surveys time-series observations. We have detected and derived periods for 89 RR Lyrae stars (82 fundamental-mode -RRab- and 7 first-overtone -RRc- pulsators, respectively) among 161 candidate variables identified in the cluster. The average period of the RR Lyrae variables (<Pab> = 0.58 days and <Pc> = 0.35 days, for RRab and RRc pulsators, respectively) and the position in the period-amplitude diagram both suggest that B514 is likely an Oosterhoff type I cluster. This appears to be in disagreement with the general behaviour of the metal-poor globular clusters in the Milky Way, which show instead Oosterhoff type II pulsation properties. The average apparent magnitude of the RR Lyrae stars sets the mean level of the cluster horizontal branch at <V(RR)> = 25.18 +/- 0.02 (sigma=0.16 mag, on 81 stars). By adopting a reddening E(B-V) = 0.07 +/- 0.02 mag, the above metallicity and M_V=0.44 +/- 0.05 mag for the RR Lyrae variables of this metallicity, we derive a distance modulus of mu_0=24.52 +/- 0.08 mag, corresponding to a distance of about 800 +/- 30 kpc, based on a value of M_V that sets mu_0(LMC)=18.52.
We obtained U_330 and B band images of the M31 nucleus using the High Resolution Camera of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The spatial resolution in the U_330-band, 0.03 FWHM, or 0.1 pc at M31, is sufficient to resolve the outskirts of the compact cluster (P3) of UV-bright stars surrounding the M31 black hole. The center of the cluster is marked by an extended source that is both brighter and redder than the other point sources within P3; it is likely to be a blend of several bright stars. We hypothesize that it marks the location of the M31 black hole. Both stellar photometry and a surface brightness fluctuation analysis, show that the P3 stellar population is consistent with early-type main sequence stars formed in a ~100 - ~200 Myr old starburst population. Evolutionary tracks of post early asymptotic giant-branch stars, associated with late-stage evolution of an old population, also traverse the U and U-B domain occupied by the P3 stars; but we argue that only a few stars could be accounted for that way. PEAGB evolution is very rapid, and there is no progenitor population of red giants associated with P3. The result that P3 comprises young stars is consistent with inferences from earlier HST observations of the integrated light of the cluster. Like the Milky Way, M31 harbors a black hole closely surrounded by apparently young stars.
We use photometry from the DECam Legacy Survey to detect candidate tidal tails extending ~5 deg on either side of the Palomar 13 globular cluster. The tails are aligned with the proper motion of Palomar 13 and are consistent with its old, metal-poor stellar population. We identify three RR Lyrae stars that are plausibly associated with the tails, in addition to four previously known in the cluster. From these RR Lyrae stars, we find that the mean distance to the cluster and tails is $23.6 pm 0.2$ kpc and estimate the total (initial) luminosity of the cluster to be $L_V=5.1^{+9.7}_{-3.4}times 10^3 L_odot$, consistent with previous claims that its initial luminosity was higher than its current luminosity. Combined with previously-determined proper motion and radial velocity measurements of the cluster, we find that Palomar 13 is on a highly eccentric orbit ($esim 0.8$) with a pericenter of ~9 kpc and an apocenter of ~69 kpc, and a recent pericentric passage of the cluster ~75 Myr ago. We note a prominent linear structure in the interstellar dust map that runs parallel to the candidate tidal features, but conclude that reddening due to dust is unlikely to account for the structure that we observe. If confirmed, the Palomar 13 stellar stream would be one of very few streams with a known progenitor system, making it uniquely powerful for studying the disruption of globular clusters, the formation of the stellar halo, and the distribution of matter within our Galaxy.
280 - S. Galleti 2005
We report on the identification of a new cluster in the far halo of the M31 galaxy. The cluster, named Bologna 514 (B514) has an integrated magnitude M_V=-8.5 +- 0.6, and a radial velocity, as estimated from two independent low-resolution spectra, V_ r=-456 +- 23 km/s, which fully confirms its membership to the M31 system. The observed integrated spectrum is very similar to those of classical globular clusters. Being located at ~ 4^o (~55 kpc in projected distance) from the center of the parent galaxy, B514 is by far the most remote M31 cluster ever discovered. Its projected position, near the galaxy major axis, and M31-centric velocity, similar to that observed in the outermost regions of the HI rotation curve, may indicate that it belongs to the subsystem of M31 clusters that has been recently proposed (Morrison et al. 2004) to be part of the dynamically-cold thin disc of the galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا