ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cluster of Blue Stars Surrounding the M31 Nuclear Black Hole

40   0   0.0 ( 0 )
 نشر من قبل Tod R. Lauer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtained U_330 and B band images of the M31 nucleus using the High Resolution Camera of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The spatial resolution in the U_330-band, 0.03 FWHM, or 0.1 pc at M31, is sufficient to resolve the outskirts of the compact cluster (P3) of UV-bright stars surrounding the M31 black hole. The center of the cluster is marked by an extended source that is both brighter and redder than the other point sources within P3; it is likely to be a blend of several bright stars. We hypothesize that it marks the location of the M31 black hole. Both stellar photometry and a surface brightness fluctuation analysis, show that the P3 stellar population is consistent with early-type main sequence stars formed in a ~100 - ~200 Myr old starburst population. Evolutionary tracks of post early asymptotic giant-branch stars, associated with late-stage evolution of an old population, also traverse the U and U-B domain occupied by the P3 stars; but we argue that only a few stars could be accounted for that way. PEAGB evolution is very rapid, and there is no progenitor population of red giants associated with P3. The result that P3 comprises young stars is consistent with inferences from earlier HST observations of the integrated light of the cluster. Like the Milky Way, M31 harbors a black hole closely surrounded by apparently young stars.

قيم البحث

اقرأ أيضاً

The Galactic Center is an excellent laboratory for studying phenomena and physical processes that may be occurring in many other galactic nuclei. The Center of our Milky Way is by far the closest galactic nucleus, and observations with exquisite reso lution and sensitivity cover 18 orders of magnitude in energy of electromagnetic radiation. Theoretical simulations have become increasingly more powerful in explaining these measurements. This review summarizes the recent progress in observational and theoretical work on the central parsec, with a strong emphasis on the current empirical evidence for a central massive black hole and on the processes in the surrounding dense nuclear star cluster. We present the current evidence, from the analysis of the orbits of more than two dozen stars and from the measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 times 1e6 Msun, beyond any reasonable doubt. We report what is known about the structure and evolution of the dense nuclear star cluster surrounding this black hole, including the astounding fact that stars have been forming in the vicinity of Sgr A* recently, apparently with a top-heavy stellar mass function. We discuss a dense concentration of fainter stars centered in the immediate vicinity of the massive black hole, three of which have orbital peri-bothroi of less than one light day. This S-star cluster appears to consist mainly of young early-type stars, in contrast to the predicted properties of an equilibrium stellar cusp around a black hole. This constitutes a remarkable and presently not fully understood paradox of youth. We also summarize what is known about the emission properties of the accreting gas onto Sgr A* and how this emission is beginning to delineate the physical properties in the hot accretion zone around the event horizon.
78 - M. A. Bransford 1999
We present the results of an ongoing investigation to provide a detailed view of the processes by which massive stars shape the surrounding interstellar medium (ISM), from pc to kpc scales. In this paper we have focused on studying the environments o f Wolf-Rayet (WR) stars in M31 to find evidence for WR wind-ISM interactions, through imaging ionized hydrogen nebulae surrounding these stars. We have conducted a systematic survey for HII shells surrounding 48 of the 49 known WR stars in M31. There are 17 WR stars surrounded by single shells, or shell fragments, 7 stars surrounded by concentric limb brightened shells, 20 stars where there is no clear physical association of the star with nearby H-alpha emission, and 4 stars which lack nearby H-alpha emission. For the 17+7 shells above, there are 12 which contain one or two massive stars (including a WR star) and that are <=40 pc in radius. These 12 shells may be classical WR ejecta or wind-blown shells. Further, there may be excess H-alpha point source emission associated with one of the 12 WR stars surrounded by putative ejecta or wind-blown shells. There is also evidence for excess point source emission associated with 11 other WR stars. The excess emission may arise from unresolved circumstellar shells, or within the extended outer envelopes of the stars themselves. In a few cases we find clear morphological evidence for WR shells interacting with each other. In several H-alpha images we see WR winds disrupting, or punching through, the walls of limb-brightened HII shells.
The classical equations of motion for an axion with potential $V(phi)=m_a^2f_a^2 [1-cos (phi/f_a)]$ possess quasi-stable, localized, oscillating solutions, which we refer to as axion stars. We study, for the first time, collapse of axion stars numeri cally using the full non-linear Einstein equations of general relativity and the full non-perturbative cosine potential. We map regions on an axion star stability diagram, parameterized by the initial ADM mass, $M_{rm ADM}$, and axion decay constant, $f_a$. We identify three regions of the parameter space: i) long-lived oscillating axion star solutions, with a base frequency, $m_a$, modulated by self-interactions, ii) collapse to a BH and iii) complete dispersal due to gravitational cooling and interactions. We locate the boundaries of these three regions and an approximate triple point $(M_{rm TP},f_{rm TP})sim (2.4 M_{pl}^2/m_a,0.3 M_{pl})$. For $f_a$ below the triple point BH formation proceeds during winding (in the complex $U(1)$ picture) of the axion field near the dispersal phase. This could prevent astrophysical BH formation from axion stars with $f_all M_{pl}$. For larger $f_agtrsim f_{rm TP}$, BH formation occurs through the stable branch and we estimate the mass ratio of the BH to the stable state at the phase boundary to be $mathcal{O}(1)$ within numerical uncertainty. We discuss the observational relevance of our findings for axion stars as BH seeds, which are supermassive in the case of ultralight axions. For the QCD axion, the typical BH mass formed from axion star collapse is $M_{rm BH}sim 3.4 (f_a/0.6 M_{pl})^{1.2} M_odot$.
We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31s inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the met al-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.
Following on from our discovery of a significant population of M31 outer halo globular clusters (GCs), and updates to the Revised Bologna Catalogue of M31 GCs, we investigate the GC system of M31 out to an unprecedented radius (~120kpc). We derive va rious ensemble properties, including the magnitude, colour and metallicity distributions, as well as the GC number density profile. One of our most significant findings is evidence for a flattening in the radial GC number density profile in the outer halo. Intriguingly, this occurs at a galactocentric radius of ~2 degrees (~30 kpc) which is the radius at which the underlying stellar halo surface density has also been shown to flatten. The GCs which lie beyond this radius are remarkably uniform in terms of their blue (V-I)o colours, consistent with them belonging to an ancient population with little to no metallicity gradient. Structural parameters are also derived for a sample of 13 newly-discovered extended clusters (ECs) and we find the lowest luminosity ECs have magnitudes and sizes similar to Palomar-type GCs in the Milky Way halo. We argue that our findings provide strong support for a scenario in which a significant fraction of the outer halo GC population of M31 has been accreted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا