ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic charge liquids

178   0   0.0 ( 0 )
 نشر من قبل T. Senthil
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High temperature superconductivity emerges in the cuprate compounds upon changing the electron density of an insulator in which the electron spins are antiferromagnetically ordered. A key characteristic of the superconductor is that electrons can be extracted from them at zero energy only if their momenta take one of four specific values (the `nodal points). A central enigma has been the evolution of the zero energy electrons in the metallic state between the antiferromagnet and the superconductor, and recent experiments yield apparently contradictory results. The oscillation of the resistance in this metal as a function of magnetic field indicate that the zero energy electrons carry momenta which lie on elliptical `Fermi pockets, while ejection of electrons by high intensity light indicates that the zero energy electrons have momenta only along arc-like regions. We present a theory of new states of matter, which we call `algebraic charge liquids, which arise naturally between the antiferromagnet and the superconductor, and reconcile these observations. Our theory also explains a puzzling dependence of the density of superconducting electrons on the total electron density, and makes a number of unique predictions for future experiments.

قيم البحث

اقرأ أيضاً

178 - B. Sriram Shastry 2012
We present the detailed formalism of the extremely correlated Fermi liquid theory, developed for treating the physics of the t-J model. We start from the exact Schwinger equation of motion for the Greens function for projected electrons, and develop a systematic expansion in a parameter lambda, relating to the double occupancy. The resulting Greens function has a canonical part arising from an effective Hamiltonian of the auxiliary electrons, and a caparison part, playing the role of a frequency dependent adaptive spectral weight. This adaptive weight balances the requirement at low omega, of the invariance of the Fermi volume, and at high omega, of decaying as c_0/(i omega), with a correlation depleted c_0 <1. The effective Hamiltonian H_{eff} describing the auxiliary Fermions is given a natural interpretation with an effective interaction V_{eff} containing both the exchange J(ij), and the hopping parameters t(ij). It is made Hermitian by adding suitable terms that ultimately vanish, in the symmetrized theory developed in this paper. Simple but important shift invariances of the t-J model are noted with respect to translating its parameters uniformly. These play a crucial role in constraining the form of V_{eff} and also provide checks for further approximations. The auxiliary and physical Greens function satisfy two sum rules, and the Lagrange multipliers for these are identified. A complete set of expressions for the Greens functions to second order in lambda is given, satisfying various invariances. A systematic iterative procedure for higher order approximations is detailed. A superconducting instability of the theory is noted at the simplest level with a high transition temperature.
Non-Fermi liquids in $d=2$ spatial dimensions can arise from coupling a Fermi surface to a gapless boson. At finite temperature, however, the perturbative quantum field theory description breaks down due to infrared divergences. These are caused by v irtual static bosonic modes, and afflict both fermionic and bosonic correlators. We show how these divergences are resolved by self-consistent boson and fermion self-energies that resum an infinite class of diagrams and correct the standard Eliashberg equations. Extending a previous approach in $d=3-epsilon$ dimensions, we find a new thermal non-Fermi liquid regime that violates the scaling laws of the zero temperature fixed point and dominates over a wide range of scales. We conclude that basic properties of quantum phase transitions and quantum-classical crossovers at finite temperature are modified in crucial ways in systems with soft bosonic fluctuations, and we begin a study of some of the phenomenological consequences.
117 - Hong Yao , Shou-Cheng Zhang , 2008
We have proposed an exactly solvable quantum spin-3/2 model on a square lattice. Its ground state is a quantum spin liquid with a half integer spin per unit cell. The fermionic excitations are gapless with a linear dispersion, while the topological v ison excitations are gapped. Moreover, the massless Dirac fermions are stable. Thus, this model is, to the best of our knowledge, the first exactly solvable model of half-integer spins whose ground state is an algebraic spin liquid.
We report the observation and systematic investigation of the space charge effect and mirror charge effect in photoemission spectroscopy. When pulsed light is incident on a sample, the photoemitted electrons experience energy redistribution after esc aping from the surface because of the Coulomb interaction between them (space charge effect) and between photoemitted electrons and the distribution of mirror charges in the sample (mirror charge effect). These combined Coulomb interaction effects give rise to an energy shift and a broadening which can be on the order of 10 meV for a typical third-generation synchrotron light source. This value is comparable to many fundamental physical parameters actively studied by photoemission spectroscopy and should be taken seriously in interpreting photoemission data and in designing next generation experiments.
We present detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied to the t-J model in two dimensions. We use typical sets of band parameters relevant to the cuprate superconductors. The second order theory in the parameter lambda is argued to be quantitatively valid in the overdoped regime for 0 < n < 0.75 (n is the particle density). The calculation involves the self consistent solution of equations for an auxiliary Fermi liquid type Greens function and an adaptive spectral weight, or caparison factor, described in recent papers by Shastry (Refs. (1) and (5)). We present the numerical results at low as well as high T at various low to intermediate densities in the normal phase with emphasis placed on features that are experimentally accessible. We display the momentum space occupation function m(k), various energy dispersions locating the peaks of spectral functions, the optical conductivity, relaxation rates for quasiparticles, and the electronic spectral functions along various directions in the Brillouin zone, and with typical additional elastic scattering. The line-shapes have an asymmetric shape and a broad background that is seen in experiments near and beyond optimal hole doping, and validate approximate recent rece
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا