ﻻ يوجد ملخص باللغة العربية
We present detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied to the t-J model in two dimensions. We use typical sets of band parameters relevant to the cuprate superconductors. The second order theory in the parameter lambda is argued to be quantitatively valid in the overdoped regime for 0 < n < 0.75 (n is the particle density). The calculation involves the self consistent solution of equations for an auxiliary Fermi liquid type Greens function and an adaptive spectral weight, or caparison factor, described in recent papers by Shastry (Refs. (1) and (5)). We present the numerical results at low as well as high T at various low to intermediate densities in the normal phase with emphasis placed on features that are experimentally accessible. We display the momentum space occupation function m(k), various energy dispersions locating the peaks of spectral functions, the optical conductivity, relaxation rates for quasiparticles, and the electronic spectral functions along various directions in the Brillouin zone, and with typical additional elastic scattering. The line-shapes have an asymmetric shape and a broad background that is seen in experiments near and beyond optimal hole doping, and validate approximate recent rece
We present the detailed formalism of the extremely correlated Fermi liquid theory, developed for treating the physics of the t-J model. We start from the exact Schwinger equation of motion for the Greens function for projected electrons, and develop
We present theoretical results for the optical conductivity and the non-resonant Raman susceptibilities for three principal polarization geometries relevant to the square lattice. The susceptibilities are obtained using the recently developed extreme
Using functional renormalization group methods, we present a self-consistent calculation of the true Fermi momenta k_F^a (antibonding band) and k_F^b (bonding band) of two spinless interacting metallic chains coupled by small interchain hopping. In t
We present an exactly solvable spin-3/2 model defined on a pentacoordinated three-dimensional graphite lattice, which realizes a novel quantum spin liquid with second-order topology. The exact solutions are described by Majorana fermions coupled to a
Non-Fermi liquids in $d=2$ spatial dimensions can arise from coupling a Fermi surface to a gapless boson. At finite temperature, however, the perturbative quantum field theory description breaks down due to infrared divergences. These are caused by v