ترغب بنشر مسار تعليمي؟ اضغط هنا

From the microcosm of the atomic nuclei to the macrocosm of the stars

72   0   0.0 ( 0 )
 نشر من قبل Masahiko Katsuma
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A necessary condition for the reliable modelling of the structure or evolution of the stars and of their concomitant nucleosynthesis is the availability of good quality nuclear data in a very wide area of the chart of nuclides. This short review presents a non-exhaustive list of nuclear data of astrophysics interest (masses, $beta$-decays, thermonuclear and non-thermonuclear reaction rates) for nuclides at the bottom of the valley of nuclear stability (mainly involved in the modelling of non-explosive phases of stellar evolution), or for more or less highly exotic nuclides (to be considered in the description of stellar explosions). Special emphasis is put on the importance of providing quality nuclear data bases that can be easily used by astrophysicists.



قيم البحث

اقرأ أيضاً

117 - G. F. Burgio , I. Vidana 2020
{it Background.} We investigate possible correlations between neutron star observables and properties of atomic nuclei. Particularly, we explore how the tidal deformability of a 1.4 solar mass neutron star, $M_{1.4}$, and the neutron skin thickness o f ${^{48}}$Ca and ${^{208}}$Pb are related to the stellar radius and the stiffness of the symmetry energy. {it Methods.} We examine a large set of nuclear equations of state based on phenomenological models (Skyrme, NLWM, DDM) and {it ab-initio} theoretical methods (BBG, Dirac-Brueckner, Variational, Quantum Monte Carlo). {it Results.} We find strong correlations between tidal deformability and NS radius, whereas a weaker correlation does exist with the stiffness of the symmetry energy. Regarding the neutron skin thickness, weak correlations appear both with the stiffness of the symmetry energy, and the radius of a $M_{1.4}$. {it Conclusion.} The tidal deformability of a $M_{1.4}$ and the neutron-skin thickness of atomic nuclei show some degree of correlation with nuclear and astrophysical observables, which however depends on the ensemble of adopted EoS.
76 - Anna Frebel 2018
Understanding the origin of the elements has been a decades long pursuit, with many open questions still remaining. Old stars found in the Milky Way and its dwarf satellite galaxies can provide answers because they preserve clean elemental patterns o f the nucleosynthesis processes that operated some 13 billion years ago. This enables the reconstruction of the chemical evolution of the elements. Here we focus on the astrophysical signatures of heavy neutron-capture elements made in the s-, i- and r-process found in old stars. A highlight is the recently discovered r-process galaxy Reticulum II that was apparently enriched by a neutron star merger. These results show that old stars in dwarf galaxies provide a novel means to constrain the astrophysical site of the r-process, ushering in much needed progress on this major outstanding question. This nuclear astrophysics work complements the many nuclear physics efforts into heavy-element formation, and aligns with recent results on the gravitational wave signature of a neutron star merger.
94 - Z. Meisel , S. George , S. Ahn 2020
We present mass excesses (ME) of neutron-rich isotopes of Ar through Fe, obtained via TOF-$Brho$ mass spectrometry at the National Superconducting Cyclotron Laboratory. Our new results have significantly reduced systematic uncertainties relative to a prior analysis, enabling the first determination of ME for $^{58,59}{rm Ti}$, $^{62}{rm V}$, $^{65}{rm Cr}$, $^{67,68}{rm Mn}$, and $^{69,70}{rm Fe}$. Our results show the $N=34$ subshell weaken at Sc and vanish at Ti, along with the absence of an $N=40$ subshell at Mn. This leads to a cooler accreted neutron star crust, highlighting the connection between the structure of nuclei and neutron stars.
75 - M. Arnould , S. Goriely 2020
A century ago, nuclear physics entered astrophysics, giving birth to a new field of science referred to as Nuclear Astrophysics. With time, it developed at an impressive pace into a vastly inter- and multidisciplinary discipline bringing into its wak e not only astronomy and cosmology, but also many other sub-fields of physics, especially particle, solid-state and computational physics, as well as chemistry, geology and even biology. The present Astronuclear Physics review focusses primarily on the facets of nuclear physics that are of relevance to astronomy and astrophysics, the theoretical aspects being of special concern here.
The symmetry energy obtained with the effective Skyrme energy density functional is related to the values of isoscalar effective mass and isovector effective mass, which is also indirectly related to the incompressibility of symmetric nuclear matter. In this work, we analyze the values of symmetry energy and its related nuclear matter parameters in five-dimensional parameter space by describing the heavy ion collision data, such as isospin diffusion data at 35 MeV/u and 50 MeV/u, neutron skin of $^{208}$Pb, and tidal deformability and maximum mass of neutron star. We obtain the parameter sets which can describe the isospin diffusion, neutron skin, tidal deformability and maximum mass of neutron star, and give the incompressibility $K_0$=250.23$pm$20.16 MeV, symmetry energy coefficient $S_0$=31.35$pm$2.08 MeV, the slope of symmetry energy $L$=59.57$pm$10.06 MeV, isoscalar effective mass $m_s^*/m$=0.75$pm$0.05 and quantity related to effective mass splitting $f_I$=0.005$pm$0.170. At two times normal density, the symmetry energy we obtained is in 35-55 MeV. To reduce the large uncertainties of $f_I$, more critical works in heavy ion collisions at different beam energies are needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا