ﻻ يوجد ملخص باللغة العربية
A century ago, nuclear physics entered astrophysics, giving birth to a new field of science referred to as Nuclear Astrophysics. With time, it developed at an impressive pace into a vastly inter- and multidisciplinary discipline bringing into its wake not only astronomy and cosmology, but also many other sub-fields of physics, especially particle, solid-state and computational physics, as well as chemistry, geology and even biology. The present Astronuclear Physics review focusses primarily on the facets of nuclear physics that are of relevance to astronomy and astrophysics, the theoretical aspects being of special concern here.
We study the explosion mechanism of collapse-driven supernovae by numerical simulations with a new nuclear EOS based on unstable nuclei. We report new results of simulations of general relativistic hydrodynamics together with the Boltzmann neutrino-t
We present mass excesses (ME) of neutron-rich isotopes of Ar through Fe, obtained via TOF-$Brho$ mass spectrometry at the National Superconducting Cyclotron Laboratory. Our new results have significantly reduced systematic uncertainties relative to a
We study the impact of astrophysically relevant nuclear isomers (astromers) in the context of the rapid neutron capture process (r-process) nucleosynthesis. We compute thermally mediated transition rates between long-lived isomers and the correspondi
We discuss the impact of the uncertainty ($pm 8$ keV) in the excitation energy of the astrophysically important 6.356 MeV $1/2^+_2$ state of $^{17}$O on the precision with which the Coulomb reduced ANC ($widetilde{C}$) for the $left<^{17}mathrm{O}(1/
Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniqu