ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the optimal window for the 2MASS dipole

31   0   0.0 ( 0 )
 نشر من قبل Michal Chodorowski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A comparison of the 2MASS flux dipole to the CMB dipole can serve as a method to constrain a combination of the cosmological parameter Omega_m and the luminosity bias of the 2MASS survey. For this constraint to be as tight as possible, it is necessary to maximize the correlation between the two dipoles. This can be achieved by optimizing the survey window through which the flux dipole is measured. Here we explicitly construct such a window for the 2MASS survey. The optimization in essence reduces to excluding from the calculation of the flux dipole galaxies brighter than some limiting magnitude K_min of the near-infrared K_s band. This exclusion mitigates nonlinear effects and shot noise from small scales, which decorrelate the 2MASS dipole from the CMB dipole. Under the assumption of negligible shot noise we find that the optimal value of K_min is about five. Inclusion of shot noise shifts the optimal K_min to larger values. We present an analytical formula for shot noise for the 2MASS flux dipole, to be used in follow-up work with 2MASS data. The misalignment angle between the two dipoles is a sensitive measure of their correlation: the higher the correlation, the smaller the expectation value of the angle. A minimum of the misalignment is thus a sign of the optimal gravity window. We model analytically the distribution function for the misalignment angle and show that the misalignment estimated by Maller et al. is consistent with the assumed underlying model (though it is greater than the expectation value). We predict with about 90% confidence that the misalignment will decrease if 2MASS galaxies brighter than K_min = 5 mag are excluded from the calculation of the flux dipole. This prediction has been indirectly confirmed by the results of Erdogdu et al. (ABRIDGED)

قيم البحث

اقرأ أيضاً

Comparison of peculiar velocities of galaxies with their gravitational accelerations (induced by the density field) is one of the methods to constrain the redshift distortion parameter beta=(Omega_m^0.55)/b, where Omega_m is the non-relativistic matt er density parameter and b is the linear bias. In particular, one can use the motion of the Local Group (LG) for that purpose. Its peculiar velocity is known from the dipole component of the cosmic microwave background, whereas its acceleration can be estimated with the use of an all-sky galaxy catalog, from the so-called clustering dipole. At the moment, the biggest dataset of that kind is the Two Micron All Sky Survey Extended Source Catalog (2MASS XSC) containing almost 1 million galaxies and complete up to ~300 Mpc/h. We applied 2MASS data to measure LG acceleration and used two methods to estimate the beta parameter. Both of them yield beta~0.4 with an error of several per cent, which is the most precise determination of this parameter from the clustering dipole to date.
157 - Gaoyong Sun , Andre Eckardt 2018
The concept of Floquet engineering is to subject a quantum system to time-periodic driving in such a way that it acquires interesting novel properties. It has been employed, for instance, for the realization of artificial magnetic fluxes in optical l attices and, typically, it is based on two approximations. First, the driving frequency is assumed to be low enough to suppress resonant excitations to high-lying states above some energy gap separating a low energy subspace from excited states. Second, the driving frequency is still assumed to be large compared to the energy scales of the low-energy subspace, so that also resonant excitations within this space are negligible. Eventually, however, deviations from both approximations will lead to unwanted heating on a time scale $tau$. Using the example of a one-dimensional system of repulsively interacting bosons in a shaken optical lattice, we investigate the optimal frequency (window) that maximizes $tau$. As a main result, we find that, when increasing the lattice depth, $tau$ increases faster than the experimentally relevant time scale given by the tunneling time $hbar/J$, so that Floquet heating becomes suppressed.
In this work, we provide faster algorithms for approximating the optimal transport distance, e.g. earth movers distance, between two discrete probability distributions $mu, u in Delta^n$. Given a cost function $C : [n] times [n] to mathbb{R}_{geq 0} $ where $C(i,j) leq 1$ quantifies the penalty of transporting a unit of mass from $i$ to $j$, we show how to compute a coupling $X$ between $r$ and $c$ in time $widetilde{O}left(n^2 /epsilon right)$ whose expected transportation cost is within an additive $epsilon$ of optimal. This improves upon the previously best known running time for this problem of $widetilde{O}left(text{min}left{ n^{9/4}/epsilon, n^2/epsilon^2 right}right)$. We achieve our results by providing reductions from optimal transport to canonical optimization problems for which recent algorithmic efforts have provided nearly-linear time algorithms. Leveraging nearly linear time algorithms for solving packing linear programs and for solving the matrix balancing problem, we obtain two separate proofs of our stated running time. Further, one of our algorithms is easily parallelized and can be implemented with depth $widetilde{O}(1/epsilon)$. Moreover, we show that further algorithmic improvements to our result would be surprising in the sense that any improvement would yield an $o(n^{2.5})$ algorithm for textit{maximum cardinality bipartite matching}, for which currently the only known algorithms for achieving such a result are based on fast-matrix multiplication.
We generate the peculiar velocity field for the 2MASS Redshift Survey (2MRS) catalog using an orbit-reconstruction algorithm. The reconstructed velocities of individual objects in 2MRS are well-correlated with the peculiar velocities obtained from hi gh-precision observed distances within 3,000 km/s. We estimate the mean matter density to be 0.31 +/- 0.05 by comparing observed to reconstructed velocities in this volume. The reconstructed motion of the Local Group in the rest frame established by distances within 3,000 km/s agrees with the observed motion and is generated by fluctuations within this volume, in agreement with observations. Then, we reconstruct the velocity field of 2MRS in successively larger radii, to study the problem of convergence towards the CMB dipole. We find that less than half of the amplitude of the CMB dipole is generated within a volume enclosing the Hydra-Centaurus-Norma supercluster at around 40 Mpc/h. Although most of the amplitude of the CMB dipole seems to be recovered by 120 Mpc/h, the direction does not agree and hence we observe no convergence up to this scale. We develop a statistical model which allows us to estimate cosmological para meters from the reconstructed growth of convergence of the velocity of the Local Group towards the CMB dipole motion. For scales up to 60 Mpc/h, assuming a Local Group velocity of 627 km/s, we estimate Omega_m h^2 = 0.11 +/- 0.06 and sigma_8=0.9 +/- 0.4, in agreement with WMAP5 measurements at the 1-sigma level. However, for scales up to 100 Mpc/h, we obtain Omega_m h^2 = 0.08 +/- 0.03 and sigma_8=1.0 +/- 0.4, which agrees at the 1 to 2-sigma level with WMAP5 results. (abridged)
Traditional Internet of Things (IoT) sensors rely on batteries that need to be replaced or recharged frequently which impedes their pervasive deployment. A promising alternative is to employ energy harvesters that convert the environmental energy int o electrical energy. Kinetic Energy Harvesting (KEH) converts the ambient motion/vibration energy into electrical energy to power the IoT sensor nodes. However, most previous works employ KEH without dynamically tracking the optimal operating point of the transducer for maximum power output. In this paper, we systematically analyse the relation between the operating point of the transducer and the corresponding energy yield. To this end, we explore the voltage-current characteristics of the KEH transducer to find its Maximum Power Point (MPP). We show how this operating point can be approximated in a practical energy harvesting circuit. We design two hardware circuit prototypes to evaluate the performance of the proposed mechanism and analyse the harvested energy using a precise load shaker under a wide set of controlled conditions typically found in human-centric applications. We analyse the dynamic current-voltage characteristics and specify the relation between the MPP sampling rate and harvesting efficiency which outlines the need for dynamic MPP tracking. The results show that the proposed energy harvesting mechanism outperforms the conventional method in terms of generated power and offers at least one order of magnitude higher power than the latter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا