ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-equivalence 3rd order ODEs by time-fixed transformations

32   0   0.0 ( 0 )
 نشر من قبل Mehdi Nadjafikhah
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let y = f(x, y, y, y) be a 3rd order ODE. By Cartan equivalence method, we will study the local equivalence problem under the transformations group of time-fixed coordinates.

قيم البحث

اقرأ أيضاً

71 - Jaime A. Moreno 2020
Differentiation is an important task in control, observation and fault detection. Levants differentiator is unique, since it is able to estimate exactly and robustly the derivatives of a signal with a bounded high-order derivative. However, the conve rgence time, although finite, grows unboundedly with the norm of the initial differentiation error, making it uncertain when the estimated derivative is exact. In this paper we propose an extension of Levants differentiator so that the worst case convergence time can be arbitrarily assigned independently of the initial condition, i.e. the estimation converges in emph{Fixed-Time}. We propose also a family of continuous differentiators and provide a unified Lyapunov framework for analysis and design.
We derive a permutability theorem for the Christoffel, Goursat and Darboux transformations of isothermic surfaces. As a consequence we obtain a simple proof of a relation between Darboux pairs of minimal surfaces in Euclidean space, curved flats in the 2-sphere and flat fronts in hyperbolic space.
110 - Yingfu Zeng 2017
Reachability analysis for hybrid systems is an active area of development and has resulted in many promising prototype tools. Most of these tools allow users to express hybrid system as automata with a set of ordinary differential equations (ODEs) as sociated with each state, as well as rules for transitions between states. Significant effort goes into developing and verifying and correctly implementing those tools. As such, it is desirable to expand the scope of applicability tools of such as far as possible. With this goal, we show how compile-time transformations can be used to extend the basic hybrid ODE formalism traditionally supported in hybrid reachability tools such as SpaceEx or Flow*. The extension supports certain types of partial derivatives and equational constraints. These extensions allow users to express, among other things, the Euler-Lagrangian equation, and to capture practically relevant constraints that arise naturally in mechanical systems. Achieving this level of expressiveness requires using a binding time-analysis (BTA), program differentiation, symbolic Gaussian elimination, and abstract interpretation using interval analysis. Except for BTA, the other components are either readily available or can be easily added to most reachability tools. The paper therefore focuses on presenting both the declarative and algorithmic specifications for the BTA phase, and establishes the soundness of the algorithmic specifications with respect to the declarative one.
94 - Jiarui Liu , Yisheng Song 2019
The strict opositivity of 4th order symmetric tensor may apply to detect vacuum stability of general scalar potential. For finding analytical expressions of (strict) opositivity of 4th order symmetric tensor, we may reduce its order to 3rd order to b etter deal with it. So, it is provided that several analytically sufficient conditions for the copositivity of 3th order 2 dimensional (3 dimensional) symmetric tensors. Subsequently, applying these conclusions to 4th order tensors, the analytically sufficient conditions of copositivity are proved for 4th order 2 dimensional and 3 dimensional symmetric tensors. Finally, we apply these results to present analytical vacuum stability conditions for vacuum stability for $mathbb{Z}_3$ scalar dark matter.
85 - Chuu-Lian Terng 2010
We give a survey of the following six closely related topics: (i) a general method for constructing a soliton hierarchy from a splitting of a loop algebra into positive and negative subalgebras, together with a sequence of commuting positive elements , (ii) a method---based on (i)---for constructing soliton hierarchies from a symmetric space, (iii) the dressing action of the negative loop subgroup on the space of solutions of the related soliton equation, (iv) classical Backlund, Christoffel, Lie, and Ribaucour transformations for surfaces in three-space and their relation to dressing actions, (v) methods for constructing a Lax pair for the Gauss-Codazzi Equation of certain submanifolds that admit Lie transforms, (vi) how soliton theory can be used to generalize classical soliton surfaces to submanifolds of higher dimension and co-dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا