ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of an H-alpha Emission Line on a Quasar, RX J1759.4+6638, at z=4.3 with AKARI

51   0   0.0 ( 0 )
 نشر من قبل Shinki Oyabu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shinki Oyabu




اسأل ChatGPT حول البحث

We report the detection of an H-alpha emission line in the low resolution spectrum of a quasar, RX J1759.4+6638, at a redshift of 4.3 with the InfraRed Camera (IRC) onboard the AKARI. This is the first spectroscopic detection of an H-alpha emission line in a quasar beyond z=4. The overall spectral energy distribution (SED) of RX J1759.4+6638 in the near- and mid-infrared wavelengths agrees with a median SED of the nearby quasars and the flux ratio of F(Ly-alpha)/F(H-alpha) is consistent with those of previous reports for lower-redshift quasars.

قيم البحث

اقرأ أيضاً

SDSS J083942.11+380526.3 is an Iron Low-ionization Broad Absorption Line (FeLoBAL) quasar at z = 2.3, and Aoki et al. (2006) recently found the presence of an H alpha absorption line in the broad H alpha emission line. Motivated by an idea that this quasar may be a huge molecular gas reservoir in the early phase of quasar evolution, we made CO(J=3-2) observations of it using the Nobeyama Millimeter Array. No significant CO emission was detected; although an emission-like feature (2.5 sigma) was seen close (~ 2) to the quasar, we regard it as a noise. The obtained 3 sigma upper limit on the CO luminosity is L_{{rm CO}(J=3-2)} = 4.5 times 10^{10} K km/s pc^2, which corresponds to M({rm H}_2) = 3.6 times 10^10 M_{odot} if we adopt the CO-to-H_2 conversion factor of 0.8 M_{odot} (K km/s pc^2)^{-1}. This upper limit is comparable to L_{{rm CO}(J=3-2)} (and thus the molecular gas mass) detected in quasars and BAL quasars at z=1-3, and no sign of the presence of the huge amount of molecular gas in this FeLoBAL quasar was obtained.
174 - F. X. An , X. Z. Zheng 2014
Using deep narrow-band $H_2S1$ and $K_{s}$-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 H$alpha$ emission-line galaxies (ELGs) at $z=2.24$ with the 5$sigma$ depths of $H_2S1=22.8$ and $K_{s}=24.8$ (AB) over 383 arcmin$^{2}$ area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 H$alpha$ ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the H$alpha$ ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from SEDs. We find that dust extinction is generally correlated with H$alpha$ luminosity and stellar mass (SM). Our results suggest that H$alpha$ ELGs are representative of star-forming galaxies (SFGs). Applying extinction correction for individual objects, we examine the intrinsic H$alpha$ luminosity function (LF) at $z=2.24$, obtaining a best-fit Schechter function characterized by a faint-end slope of $alpha=-1.3$. This is shallower than the typical slope of $alpha sim -1.6$ in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus key to recovering the intrinsic LF as the extinction globally increases with H$alpha$ luminosity. Moreover, we find that our H$alpha$ LF mirrors the SM function of SFGs at the same cosmic epoch. This finding indeed reflects the tight correlation between SFR and SM for the SFGs, i.e., the so-called main sequence.
In this work we report the discovery of the hyperluminous galaxy HELP_J100156.75+022344.7 at the photometric redshift of z ~ 4.3. The galaxy was discovered in the Cosmological Evolution Survey (COSMOS) field, one of the fields studied by the Herschel Extragalactic Legacy Project (HELP). We present the spectral energy distribution (SED) of the galaxy and fit it with the CYprus models for Galaxies and their NUclear Spectra (CYGNUS) multi-component radiative transfer models. We find that its emission is dominated by an obscured quasar with a predicted total 1-1000um luminosity of $3.91^{+1.69}_{-0.55} times 10^{13} L_odot$ and an active galactic nucleus (AGN) fraction of ~89%. We also fit HELP_J100156.75+022344.7 with the Code Investigating GALaxy Emission (CIGALE) code and find a similar result. This is only the second z > 4 hyperluminous obscured quasar discovered to date. The discovery of HELP_J100156.75+022344.7 in the ~ 2deg^2 COSMOS field implies that a large number of obscured hyperluminous quasars may lie in the HELP fields which cover ~ 1300deg^2. If this is confirmed, tension between supermassive black hole evolution models and observations will be alleviated. We estimate the space density of objects like HELP_J100156.75+022344.7 at z ~ 4.5 to be $sim 1.8 times 10^{-8}$Mpc$^{-3}$. This is slightly higher than the space density of coeval hyperluminous optically selected quasars suggesting that the obscuring torus in z > 4 quasars may have a covering factor $gtrsim 50%$.
110 - Ken-ichi Tadaki 2010
We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) wh ich corresponds to a 3 sigma limiting line flux of 2.5 x 10^-17 erg s^-1 cm^-2 over a 56 arcmnin^2 contiguous area (excluding a shallower area). From this survey, we have identified 11 H-alpha emitters and one AGN at z=2.2 on the basis of narrow-band excesses and photometric redshifts. We obtained spectra for seven new objects among them, including one AGN, and an emission line above 3 sigma is detected from all of them. We have estimated star formation rates (SFR) and stellar masses (M_star) for individual galaxies. The average SFR and M_star is 27.8M_solar yr^-1 and 4.0 x 10^10M_solar, respectivly. Their specific star formation rates are inversely correlated with their stellar masses. Fitting to a Schechter function yields the H-alpha luminosity function with log L = 42.82, log phi = -2.78 and alpha = -1.37. The average star formation rate density in the survey volume is estimated to be 0.31M_solar yr^-1Mpc^-3 according to the Kennicutt relation between H-alpha luminosity and star formation rate. We compare our H-alpha emitters at z=2.2 in GOODS-N with narrow-band line emitters in other field and clusters to see their time evolution and environmental dependence. We find that the star formation activity is reduced rapidly from z=2.5 to z=0.8 in the cluster environment, while it is only moderately changed in the field environment. This result suggests that the timescale of galaxy formation is different among different environments, and the star forming activities in high density regions eventually overtake those in lower density regions as a consequence of galaxy formation bias at high redshifts.
We study the environmental dependence of the strength of polycyclic aromatic hydrocarbon (PAH) emission by AKARI observations of RX J0152.7-1357, a galaxy cluster at z=0.84. PAH emission reflects the physical conditions of galaxies and dominates 8 um luminosity (L8), which can directly be measured with the L15 band of AKARI. L8 to infrared luminosity (LIR) ratio is used as a tracer of the PAH strength. Both photometric and spectroscopic redshifts are applied to identify the cluster members. The L15-band-detected galaxies tend to reside in the outskirt of the cluster and have optically green colour, R-z~ 1.2. We find no clear difference of the L8/LIR behaviour of galaxies in field and cluster environment. The L8/LIR of cluster galaxies decreases with specific-star-formation rate divided by that of main-sequence galaxies, and with LIR, consistent with the results for field galaxies. The relation between L8/LIR and LIR is between those at z=0 and z=2 in the literature. Our data also shows that starburst galaxies, which have lower L8/LIR than main-sequence, are located only in the outskirt of the cluster. All these findings extend previous studies, indicating that environment affects only the fraction of galaxy types and does not affect the L8/LIR behaviour of star-forming galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا