ترغب بنشر مسار تعليمي؟ اضغط هنا

Local attachment in networks under churn

38   0   0.0 ( 0 )
 نشر من قبل Heiko Bauke
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this contribution we introduce local attachment as an universal network-joining protocol for peer-to-peer networks, social networks, or other kinds of networks. Based on this protocol nodes in a finite-size network dynamically create power-law connectivity distributions. Nodes or peers maintain them in a self-organized statistical way by incorporating local information only. We investigate the structural and macroscopic properties of such local attachment networks by extensive numerical simulations, including correlations and scaling relations between exponents. The emergence of the power-law degree distribution is further investigated by considering preferential attachment with a nonlinear attractiveness function as an approximative model for local attachment. This study suggests the local attachment scheme as a procedure to be included in future peer-to-peer protocols to enable the efficient production of stable network topologies in a continuously changing environment.

قيم البحث

اقرأ أيضاً

142 - Menghui Li , Liang Gao , Ying Fan 2009
Global degree/strength based preferential attachment is widely used as an evolution mechanism of networks. But it is hard to believe that any individual can get global information and shape the network architecture based on it. In this paper, it is f ound that the global preferential attachment emerges from the local interaction models, including distance-dependent preferential attachment (DDPA) evolving model of weighted networks(M. Li et al, New Journal of Physics 8 (2006) 72), acquaintance network model(J. Davidsen et al, Phys. Rev. Lett. 88 (2002) 128701) and connecting nearest-neighbor(CNN) model(A. Vazquez, Phys. Rev. E 67 (2003) 056104). For DDPA model and CNN model, the attachment rate depends linearly on the degree or strength, while for acquaintance network model, the dependence follows a sublinear power law. It implies that for the evolution of social networks, local contact could be more fundamental than the presumed global preferential attachment. This is onsistent with the result observed in the evolution of empirical email networks.
341 - Yasuhiro Hashimoto 2015
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu um limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically and confirm that those probability distributions are well supported by the numerical experiments.
We study periodic steady states of a lattice system under external cyclic energy supply using simulation. We consider different protocols for cyclic energy supply and examine the energy storage. Under the same energy flux, we found that the stored en ergy depends on the details of the supply, period and amplitude of the supply. Further, we introduce an adiabatic wall as internal constrain into the lattice and examine the stored energy with respect to different positions of the internal constrain. We found that the stored energy for constrained systems are larger than their unconstrained counterpart. We also observe that the system stores more energy through large and rare energy delivery, comparing to small and frequent delivery.
99 - Guido Caldarelli , 2002
We study the properties of metrics aimed at the characterization of grid-like ordering in complex networks. These metrics are based on the global and local behavior of cycles of order four, which are the minimal structures able to identify rectangula r clustering. The analysis of data from real networks reveals the ubiquitous presence of a high level of grid-like ordering that is non-trivially correlated with the local degree properties. These observations provide new insights on the hierarchical structure of complex networks.
We study the growth of random networks under a constraint that the diameter, defined as the average shortest path length between all nodes, remains approximately constant. We show that if the graph maintains the form of its degree distribution then t hat distribution must be approximately scale-free with an exponent between 2 and 3. The diameter constraint can be interpreted as an environmental selection pressure that may help explain the scale-free nature of graphs for which data is available at different times in their growth. Two examples include graphs representing evolved biological pathways in cells and the topology of the Internet backbone. Our assumptions and explanation are found to be consistent with these data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا