ﻻ يوجد ملخص باللغة العربية
We consider Khudaverdians geometric version of a Batalin-Vilkovisky (BV) operator Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semidensities to semidensities. We find a local formula for the Delta_E operator in arbitrary coordinates. As an important application of this setup, we consider the Dirac antibracket on an antisymplectic manifold with antisymplectic second-class constraints. We show that the entire Dirac construction, including the corresponding Dirac BV operator Delta_{E_D}, exactly follows from conversion of the antisymplectic second-class constraints into first-class constraints on an extended manifold.
Recent works have revealed that the recipe for field-antifield quantization of Lagrangian gauge theories can be considerably relaxed when it comes to choosing a path integral measure rho if a zero-order term u_{rho} is added to the Delta operator. T
A general method of the BRST--anti-BRST symmetric conversion of second-class constraints is presented. It yields a pair of commuting and nilpotent BRST-type charges that can be naturally regarded as BRST and anti-BRST ones. Interchanging the BRST and
We revisit Khudaverdians geometric construction of an odd nilpotent operator Delta_E that sends semidensities to semidensities on an antisymplectic manifold. We find a local formula for the Delta_E operator in arbitrary coordinates and we discuss its connection to Batalin-Vilkovisky quantization.
The section condition of Double Field Theory has been argued to mean that doubled coordinates are gauged: a gauge orbit represents a single physical point. In this note, we consider a doubled and at the same time gauged particle action, and show that
Gauge-invariant systems in unconstrained configuration and phase spaces, equivalent to second-class constraints systems upon a gauge-fixing, are discussed. A mathematical pendulum on an $n-1$-dimensional sphere $S^{n-1}$ as an example of a mechanical