ترغب بنشر مسار تعليمي؟ اضغط هنا

A Model for QCD at High Density and Large Quark Mass

250   0   0.0 ( 0 )
 نشر من قبل Alessandra Feo
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion and choosing Polyakov type of loops as the main dynamical variables representing the fermionic matter. To get a first idea of the phase structure, the model is analyzed in strong coupling expansion and using a mean field approximation. In numerical simulations, the model still shows the so-called sign problem, a difficulty peculiar to non-zero chemical potential, but it permits the development of algorithms which ensure a good overlap of the Monte Carlo ensemble with the true one. We review the main features of the model and present calculations concerning the dependence of various observables on the chemical potential and on the temperature, in particular of the charge density and the diquark susceptibility, which may be used to characterize the various phases expected at high baryonic density. We obtain in this way information about the phase structure of the model and the corresponding phase transitions and cross over regions, which can be considered as hints for the behaviour of non-zero density QCD.



قيم البحث

اقرأ أيضاً

152 - H. Saito , S. Ejiri , S. Aoki 2013
We study the phase structure of lattice QCD with heavy quarks at finite temperature and density by a histogram method. We determine the location of the critical point at which the first-order deconfining transition in the heavy-quark limit turns into a crossover at intermediate quark masses through a change of the shape of the histogram under variation of coupling parameters. We estimate the effect of the complex phase factor which causes the sign problem at finite density, and show that, in heavy-quark QCD, the effect is small around the critical point. We determine the critical surface in 2+1 flavor QCD in the heavy-quark region at all values of the chemical potential mu including mu=infty.
363 - Gert Aarts 2013
A brief overview of the QCD phase diagram at nonzero temperature and density is provided. It is explained why standard lattice QCD techniques are not immediately applicable for its determination, due to the sign problem. We then discuss a selection o f recent lattice approaches that attempt to evade the sign problem and classify them according to the underlying principle: constrained simulations (density of states, histograms), holomorphicity (complex Langevin, Lefschetz thimbles), partial summations (clusters, subsets, bags) and change in integration order (strong coupling, dual formulations).
179 - R. De Pietri , A. Feo , E. Seiler 2007
We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion and choosing Polyakov-type loops as the main dynamical variables representing the fermionic matter. This model still shows the so-called sign problem, a difficulty peculiar to non-zero chemical potential, but it permits the development of algorithms which ensure a good overlap of the simulated Monte Carlo ensemble with the true one. We review the main features of the model and present results concerning the dependence of various observables on the chemical potential and on the temperature, in particular of the charge density and the Polykov loop susceptibility, which may be used to characterize the various phases expected at high baryonic density. In this way, we obtain information about the phase structure of the model and the corresponding phase transitions and cross over regions, which can be considered as hints about the behaviour of non-zero density QCD.
248 - G. Endrodi , Z. Fodor , S.D. Katz 2011
We determine the phase diagram of QCD on the mu-T plane for small to moderate chemical potentials. Two transition lines are defined with two quantities, the chiral condensate and the strange quark number susceptibility. The calculations are carried o ut on N_t =6,8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavor staggered fermion action using physical quark masses. After carrying out the continuum extrapolation we find that both quantities result in a similar curvature of the transition line. Furthermore, our results indicate that in leading order the width of the transition region remains essentially the same as the chemical potential is increased.
We delineate equilibrium phase structure and topological charge distribution of dense two-colour QCD at low temperature by using a lattice simulation with two-flavour Wilson fermions that has a chemical potential $mu$ and a diquark source $j$ incorpo rated. We systematically measure the diquark condensate, the Polyakov loop, the quark number density and the chiral condensate with improved accuracy and $jto0$ extrapolation over earlier publications; the known qualitative features of the low temperature phase diagram, which is composed of the hadronic, Bose-Einstein condensed (BEC) and BCS phases, are reproduced. In addition, we newly find that around the boundary between the hadronic and BEC phases, nonzero quark number density occurs even in the hadronic phase in contrast to the prediction of the chiral perturbation theory (ChPT), while the diquark condensate approaches zero in a manner that is consistent with the ChPT prediction. At the highest $mu$, which is of order the inverse of the lattice spacing, all the above observables change drastically, which implies a lattice artifact. Finally, at temperature of order $0.45T_c$, where $T_c$ is the chiral transition temperature at zero chemical potential, the topological susceptibility is calculated from a gradient-flow method and found to be almost constant for all the values of $mu$ ranging from the hadronic to BCS phase. This is a contrast to the case of $0.89T_c$ in which the topological susceptibility becomes small as the hadronic phase changes into the quark-gluon plasma phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا