ﻻ يوجد ملخص باللغة العربية
We study and solve the ground-state problem of a microscopic model for a family of orbitally degenerate quantum magnets. The orbital degrees of freedom are assumed to have directional character and are represented by static Potts-like variables. In the limit of vanishing Hunds coupling, the ground-state manifold of such a model is spanned by the hard-core dimer (spin singlet) coverings of the lattice. The extensive degeneracy of dimer coverings is lifted at a finite Hunds coupling through an order-out-of-disorder mechanism by virtual triplet excitations. The relevance of our results to several experimentally studied systems is discussed.
We study spin-wave interactions in quantum antiferromagnets by expressing the usual magnon annihilation and creation operators in terms of Hermitian field operators representing transverse staggered and ferromagnetic spin fluctuations. In this parame
Field-induced excitation gaps in quantum spin chains are an interesting phenomenon related to confinements of topological excitations. In this paper, I present a novel type of this phenomenon. I show that an effective magnetic field with a fourfold s
Motivated by the recent synthesis of the spin-1 A-site spinel NiRh$_{text 2}$O$_{text 4}$, we investigate the classical to quantum crossover of a frustrated $J_1$-$J_2$ Heisenberg model on the diamond lattice upon varying the spin length $S$. Applyin
We map the problem of the orbital excitation (orbiton) in a 2D antiferromagnetic and ferroorbital ground state onto a problem of a hole in 2D antiferromagnet. The orbiton turns out to be coupled to magnons and can only be mobile on a strongly renorma
We calculate the bipartite von Neumann and second Renyi entanglement entropies of the ground states of spin-1/2 dimerized Heisenberg antiferromagnets on a square lattice. Two distinct dimerization patterns are considered: columnar and staggered. In b