ﻻ يوجد ملخص باللغة العربية
We consider a three dimensional system consisting of a large number of small spherical particles, distributed in a range of sizes and heights (with uniform distribution in the horizontal direction). Particles move vertically at a size-dependent terminal velocity. They are either allowed to merge whenever they cross or there is a size ratio criterion enforced to account for collision efficiency. Such a system may be described, in mean field approximation, by the Smoluchowski kinetic equation with a differential sedimentation kernel, used to study e.g. rain initiation and particle distributions in the atmosphere. We solve the kinetic equation analytically to obtain steady state and self-similar solutions in time and in height, using methods borrowed from weak turbulence theory. Analytical results are compared with direct numerical simulations (DNS) of moving and merging particles, and a good agreement is found.
We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely p
We report on the use of magnetic sedimentation as a means to determine the size distribution of dispersed magnetic particles. The particles investigated here are i) single anionic and cationic nanoparticles of diameter D = 7 nm and ii) nanoparticle c
The motion of self-propelled particles can be rectified by asymmetric or ratchet-like periodic patterns in space. Here we show that a non-zero average drift can already be induced in a periodic potential with symmetric barriers when the self-propulsi
We study fluctuations of particle absorption by a three-dimensional domain with multiple absorbing patches. The domain is in contact with a gas of interacting diffusing particles. This problem is motivated by living cell sensing via multiple receptor
We investigate the sedimentation of initially packed paramagnetic particles in presence of a homogeneous external magnetic field, in a Hele-Shaw cell filled with water. Although the magnetic susceptibility of the particles is small and the particle-p