ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric control theory I: mathematical foundations

422   0   0.0 ( 0 )
 نشر من قبل Enrico Massa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A geometric setup for control theory is presented. The argument is developed through the study of the extremals of action functionals defined on piecewise differentiable curves, in the presence of differentiable non-holonomic constraints. Special emphasis is put on the tensorial aspects of the theory. To start with, the kinematical foundations, culminating in the so called variational equation, are put on geometrical grounds, via the introduction of the concept of infinitesimal control . On the same basis, the usual classification of the extremals of a variational problem into normal and abnormal ones is also rationalized, showing the existence of a purely kinematical algorithm assigning to each admissible curve a corresponding abnormality index, defined in terms of a suitable linear map. The whole machinery is then applied to constrained variational calculus. The argument provides an interesting revisitation of Pontryagin maximum principle and of the Erdmann-Weierstrass corner conditions, as well as a proof of the classical Lagrange multipliers method and a local interpretation of Pontryagins equations as dynamical equations for a free (singular) Hamiltonian system. As a final, highly non-trivial topic, a sufficient condition for the existence of finite deformations with fixed endpoints is explicitly stated and proved.

قيم البحث

اقرأ أيضاً

101 - Benjamin Grimmer 2021
(Renegar, 2016) introduced a novel approach to transforming generic conic optimization problems into unconstrained, uniformly Lipschitz continuous minimization. We introduce radial transformations generalizing these ideas, equipped with an entirely n ew motivation and development that avoids any reliance on convex cones or functions. Perhaps of greatest practical importance, this facilitates the development of new families of projection-free first-order methods applicable even in the presence of nonconvex objectives and constraint sets. Our generalized construction of this radial transformation uncovers that it is dual (i.e., self-inverse) for a wide range of functions including all concave objectives. This gives a powerful new duality relating optimization problems to their radially dual problem. For a broad class of functions, we characterize continuity, differentiability, and convexity under the radial transformation as well as develop a calculus for it. This radial duality provides a strong foundation for designing projection-free radial optimization algorithms, which is carried out in the second part of this work.
In this article, we study the strong well-posedness, stability and optimal control of an incompressible magneto-viscoelastic fluid model in two dimensions. The model consists of an incompressible Navier--Stokes equation for the velocity field, an evo lution equation for the deformation tensor, and a gradient flow equation for the magnetization vector. First, we prove that the model under consideration posseses a global strong solution in a suitable functional framework. Second, we derive stability estimates with respect to an external magnetic field. Based on the stability estimates we use the external magnetic field as the control to minimize a cost functional of tracking-type. We prove existence of an optimal control and derive first-order necessary optimality conditions. Finally, we consider a second optimal control problem, where the external magnetic field, which represents the control, is generated by a finite number of fixed magnetic field coils.
We develop the foundations of a geometric theory of countably-infinite approximate groups, extending work of Bjorklund and the second-named author. Our theory is based on the notion of a quasi-isometric quasi-action (qiqac) of an approximate group on a metric space. More specifically, we introduce a geometric notion of finite generation for approximate group and prove that every geometrically finitely-generated approximate group admits a geometric qiqac on a proper geodesic metric space. We then show that all such spaces are quasi-isometric, hence can be used to associate a canonical QI type with every geometrically finitely-generated approximate group. This in turn allows us to define geometric invariants of approximate groups using QI invariants of metric spaces. Among the invariants we consider are asymptotic dimension, finiteness properties, numbers of ends and growth type. A particular focus is on qiqacs on hyperbolic spaces. Our strongest results are obtained for approximate groups which admit a geometric qiqac on a proper geodesic hyperbolic space. For such ``hyperbolic approximate groups we establish a number of fundamental properties in analogy with the case of hyperbolic groups. For example, we show that their asymptotic dimension is one larger than the topological dimension of their Gromov boundary and that - under some mild assumption of being ``non-elementary - they have exponential growth and act minimally on their Gromov boundary. We also study convex cocompact qiqacs on hyperbolic spaces. Using the theory of Morse boundaries, we extend some of our results concerning qiqacs on hyperbolic spaces to qiqacs on proper geodesic metric spaces with non-trivial Morse boundary.
We present an ab-initio approach for grand canonical ensembles in thermal equilibrium with local or nonlocal external potentials based on the one-reduced density matrix. We show that equilibrium properties of a grand canonical ensemble are determined uniquely by the eq-1RDM and establish a variational principle for the grand potential with respect to its one-reduced density matrix. We further prove the existence of a Kohn-Sham system capable of reproducing the one-reduced density matrix of an interacting system at finite temperature. Utilizing this Kohn-Sham system as an unperturbed system, we deduce a many-body approach to iteratively construct approximations to the correlation contribution of the grand potential.
156 - Andrei Okounkov 2017
This is an introduction to: (1) the enumerative geometry of rational curves in equivariant symplectic resolutions, and (2) its relation to the structures of geometric representation theory. Written for the 2015 Algebraic Geometry Summer Institute.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا