ﻻ يوجد ملخص باللغة العربية
This is an introduction to: (1) the enumerative geometry of rational curves in equivariant symplectic resolutions, and (2) its relation to the structures of geometric representation theory. Written for the 2015 Algebraic Geometry Summer Institute.
The subjects in the title are interwoven in many different and very deep ways. I recently wrote several expository accounts [64-66] that reflect a certain range of developments, but even in their totality they cannot be taken as a comprehensive surve
Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 5-folds. We find recursions for meeting numbers of genus 0 curves, and we determine the contributions of moving multiple covers of genus 0 curves to the genus 1 Gr
We construct a lax monoidal Topological Quantum Field Theory that computes Deligne-Hodge polynomials of representation varieties of the fundamental group of any closed manifold into any complex algebraic group $G$. As byproduct, we obtain formulas fo
We give an exposition of the Horn inequalities and their triple role characterizing tensor product invariants, eigenvalues of sums of Hermitian matrices, and intersections of Schubert varieties. We follow Belkales geometric method, but assume only ba
We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here random means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p