ﻻ يوجد ملخص باللغة العربية
We present a comprehensive mass reconstruction of the rich galaxy cluster Cl 0024+17 at z~0.4 from ACS data, unifying both strong- and weak-lensing constraints. The weak-lensing signal from a dense distribution of background galaxies (~120 per square arcmin) across the cluster enables the derivation of a high-resolution parameter-free mass map. The strongly-lensed objects tightly constrain the mass structure of the cluster inner region on an absolute scale, breaking the mass-sheet degeneracy. The mass reconstruction of Cl 0024+17 obtained in such a way is remarkable. It reveals a ringlike dark matter substructure at r~75 surrounding a soft, dense core at r~50. We interpret this peculiar sub-structure as the result of a high-speed line-of-sight collision of two massive clusters 1-2 Gyr ago. Such an event is also indicated by the cluster velocity distribution. Our numerical simulation with purely collisionless particles demonstrates that such density ripples can arise by radially expanding, decelerating particles that originally comprised the pre-collision cores. Cl 0024+17 can be likened to the bullet cluster 1E0657-56, but viewed $along$ the collision axis at a much later epoch. In addition, we show that the long-standing mass discrepancy for Cl 0024+17 between X-ray and lensing can be resolved by treating the cluster X-ray emission as coming from a superposition of two X-ray systems. The clusters unusual X-ray surface brightness profile that requires a two isothermal sphere description supports this hypothesis.
We present a weak-lensing analysis of the galaxy cluster CL J1226+3332 at z=0.89 using Hubble Space Telescope Advanced Camera for Surveys images. The cluster is the hottest (>10 keV), most X-ray luminous system at z>0.6 known to date. The relaxed X-r
The sloshing of the cold gas in the cores of relaxed clusters of galaxies is a widespread phenomenon, evidenced by the presence of spiral-shaped cold fronts in X-ray observations of these systems. In simulations, these flows of cold gas readily form
Knowledge of the structure of galaxy clusters is essential for an understanding of large scale structure in the universe, and may provide important clues to the nature of dark matter. Moreover, the shape of the dark matter distribution in the cluster
Determining the structure of galaxy clusters is essential for an understanding of large scale structure in the universe, and may hold important clues to the identity and nature of dark matter particles. Moreover, the core dark matter distribution may
Galaxy cluster mass distributions offer an important test of the cold dark matter picture of structure formation, and may even contain clues about the nature of dark matter. X-ray imaging spectroscopy of relaxed systems can map cluster dark matter di