ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Gravitational Radiation from Binary Black Hole MACHOs in the Galactic Halo

48   0   0.0 ( 0 )
 نشر من قبل Duncan Brown
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Duncan A. Brown




اسأل ChatGPT حول البحث

The Laser Interferometer Gravitational Wave Observatory (LIGO) is one of a new generation of detectors of gravitational radiation. The existence of gravitational radiation was first predicted by Einstein in 1916, however gravitational waves have not yet been directly observed. One source of gravitation radiation is binary inspiral. Two compact bodies orbiting each other, such as a pair of black holes, lose energy to gravitational radiation. As the system loses energy the bodies spiral towards each other. This causes their orbital speed and the amount of gravitational radiation to increase, producing a characteristic ``chirp waveform in the LIGO sensitive band. In this thesis, matched filtering of LIGO science data is used to search for low mass binary systems in the halo of dark matter surrounding the Milky Way. Observations of gravitational microlensing events of stars in the Large Magellanic Cloud suggest that some fraction of the dark matter in the halo may be in the form of Massive Astrophysical Compact Halo Objects (MACHOs). It has been proposed that low mass black holes formed in the early universe may be a component of the MACHO population; some fraction of these black hole MACHOs will be in binary systems and detectable by LIGO. The inspiral from a MACHO binary composed of two 0.5 solar mass black holes enters the LIGO sensitive band around 40 Hz. The chirp signal increases in amplitude and frequency, sweeping through the sensitive band to 4400 Hz in 140 seconds. By using evidence from microlensing events and theoretical predictions of the population an upper limit is placed on the rate of black hole MACHO inspirals in the galactic halo.



قيم البحث

اقرأ أيضاً

139 - S. Babak , R. Biswas , P. R. Brady 2012
We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multi-detector search for binary coalescence has been used to search data taken in recent LIGO and Vir go runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise.
We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveforms amplitude and phase using a principal c omponent analysis. We train mlgw on about $mathcal{O}(10^3)$ TEOBResumS and SEOBNRv4 effective-one-body waveforms with mass ratios $qin[1,20]$ and aligned dimensionless spins $sin[-0.80,0.95]$. The resulting models are faithful to the training sets at the ${sim}10^{-3}$ level (averaged on the parameter space). The speed up for a single waveform generation is a factor 10 to 50 (depending on the binary mass and initial frequency) for TEOBResumS and approximately an order of magnitude more for SEOBNRv4. Furthermore, mlgw provides a closed form expression for the waveform and its gradient with respect to the orbital parameters; such an information might be useful for future improvements in GW data analysis. As demonstration of the capabilities of mlgw to perform a full parameter estimation, we re-analyze the public data from the first GW transient catalog (GWTC-1). We find broadly consistent results with previous analyses at a fraction of the cost, although the analysis with spin aligned waveforms gives systematic larger values of the effective spins with respect to previous analyses with precessing waveforms. Since the generation time does not depend on the length of the signal, our model is particularly suitable for the analysis of the long signals that are expected to be detected by third-generation detectors. Future applications include the analysis of waveform systematics and model selection in parameter estimation.
Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $sim 15$ orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter ${lambda}$.
We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LI GO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.
Gravitational radiation is properly defined only at future null infinity ($scri$), but in practice it is estimated from data calculated at a finite radius. We have used characteristic extraction to calculate gravitational radiation at $scri$ for the inspiral and merger of two equal mass non-spinning black holes. Thus we have determined the first unambiguous merger waveforms for this problem. The implementation is general purpose, and can be applied to calculate the gravitational radiation, at $scri$, given data at a finite radius calculated in another computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا