ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetry and Nuclear Pairing

78   0   0.0 ( 0 )
 نشر من قبل A. B. Balantekin
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that nuclear pairing Hamiltonian exhibits supersymmetry in the strong-coupling limit. The underlying supersymmetric quantum mechanical structure explains the degeneracies between the energies of the N and Nmax-N+1 pair eigenstates. The supersymmetry transformations connecting these states are given.

قيم البحث

اقرأ أيضاً

On the basis of time-dependent mean-field picture, we discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes as representatives of surface shape vibrations of a superfluid droplet (nucleus). We c onsider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as axially symmetric and asymmetric shape fluctuations. We show that the intimate connections between the BCS pairing and collective vibrations reveal through the inertial masses governing their collective kinetic energies.
We discuss a microscopic framework for phenomenological boson-fermion models of nuclear structure based on the U($n/m$) type of superalgebras. The generalized Dyson mapping of fermion collective superalgebras provides a basis to do so and to understa nd how collectivity selects the required preservation of boson plus fermion number as a good quantum number. We also consider the difference between dynamical and invariant supersymmetries based on possible supermultiplets of spectra of neighboring odd and even nuclei. We point out that different criteria exist for choosing the appropriate single particle transfer operators in the two cases and discuss a microscopically based method to construct these operators in the case of dynamical supersymmetry.
We study the cooling of isolated neutron stars with particular regard to the importance of nuclear pairing gaps. A microscopic nuclear equation of state derived in the Brueckner-Hartree-Fock approach is used together with compatible neutron and proto n pairing gaps. We then study the effect of modifying the gaps on the final deduced neutron star mass distributions. We find that a consistent description of all current cooling data can be achieved and a reasonable neutron star mass distribution can be predicted employing the (slightly reduced by about 40%) proton 1S0 Bardeen-Cooper-Schrieffer (BCS) gaps and no neutron 3P2 pairing.
The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly deplete the available single-particle strength around the Fermi surface and thus provide a reduction mechanism of the pairing gap. Here, we study this effect in the singlet and triplet channels of both neutron matter and symmetric nuclear matter. Our calculations use phase-shift equivalent interactions and chiral two-body and three-body interactions as a starting point. We find an unambiguous reduction of the gap in all channels with very small dependence on the NN force in the singlet neutron matter and the triplet nuclear matter channel. In the latter channel, short range correlations alone provide a 50% reduction of the pairing gap.
The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within the framework of the extend Bruecker-Hartree-Fock (BHF) approach combined with the BCS theory. The self-energy up to the second-order contribut ion turns out to reduce strongly the effective energy gap, while the emph{renormalization} term enhances it significantly. In addition, the effect of the three-body force on the np pairing gap is shown to be negligible. To connect the present results with the np pairing in finite nuclei, an effective density-dependent zero-range pairing force is established with the parameters calibrated to the microscopically calculated energy gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا