ترغب بنشر مسار تعليمي؟ اضغط هنا

Pan-Planets: Searching for hot Jupiters around cool dwarfs

106   0   0.0 ( 0 )
 نشر من قبل Christian Obermeier
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 hours. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters $T_{eff}$ and log$g$ of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte-Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find $3.0^{+3.3}_{-1.6}$ hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least $0.17(^{+0.67}_{-0.04})$%, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, $0.14(^{+0.15}_{-0.076})%$. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of $0.11(^{+0.37}_{-0.02})$% in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. Therefore we cannot yet confirm the theoretical prediction of a lower occurrence rate for cool stars.



قيم البحث

اقرأ أيضاً

Jovian planet formation has been shown to be strongly correlated with host star metallicity, which is thought to be a proxy for disk solids. Observationally, previous works have indicated that jovian planets preferentially form around stars with sola r and super solar metallicities. Given these findings, it is challenging to form planets within metal-poor environments, particularly for hot Jupiters that are thought to form via metallicity-dependent core accretion. Although previous studies have conducted planet searches for hot Jupiters around metal-poor stars, they have been limited due to small sample sizes, which are a result of a lack of high-quality data making hot Jupiter occurrence within the metal-poor regime difficult to constrain until now. We use a large sample of halo stars observed by TESS to constrain the upper limit of hot Jupiter occurrence within the metal-poor regime (-2.0 $leq$ [Fe/H] $leq$ -0.6). Placing the most stringent upper limit on hot Jupiter occurrence, we find the mean 1-$sigma$ upper limit to be 0.18 $%$ for radii 0.8 -2 R$_{rm{Jupiter}}$ and periods $0.5- 10$ days. This result is consistent with previous predictions indicating that there exists a certain metallicity below which no planets can form.
187 - Jason H. Steffen 2012
We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.
The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than $sim40$ degrees with respect to the plane of the hot Jupiters orbit. The high occurrence rate of wide companions in hot Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than $sim20$ degrees to recreate the observations with good fidelity. As a result, the companion orbits are likely well-aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.
We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 - a low metallicity K6V dwarf star. Photometry from TESS yields radii of $R_{rm b} = 2.33 pm 0 .10$ $R_{oplus}$ and $R_{rm c} = 2.82 pm 0.15$ $R_{oplus}$, and periods of 3.13 and 7.49 days for TOI-1260b and TOI-1260c, respectively. We combined the TESS data with a series of ground-based follow-up observations to characterize the planetary system. From HARPS-N high-precision radial velocities we obtain $M_{rm b} = 8.61_{ - 1.46 } ^ { + 1.36 }$ $M_{oplus}$ and $M_{rm c} = 11.84_{ - 3.23 } ^ { + 3.38 }$ $M_{oplus}$. The star is moderately active with a complex activity pattern, which necessitated the use of Gaussian process regression for both the light curve detrending and the radial velocity modelling, in the latter case guided by suitable activity indicators. We successfully disentangle the stellar-induced signal from the planetary signals, underlining the importance and usefulness of the Gaussian Process approach. We test the systems stability against atmospheric photoevaporation and find that the TOI-1260 planets are classic examples of the structure and composition ambiguity typical for the $2-3$ $R_{oplus}$ range.
By measuring the elemental abundances of a star, we can gain insight into the composition of its initial gas cloud -- the formation site of the star and its planets. Planet formation requires metals, the availability of which is determined by the ele mental abundance. In the case where metals are extremely deficient, planet formation can be stifled. To investigate such a scenario requires a large sample of metal-poor stars and a search for planets therein. This paper focuses on the selection and validation of a halo star sample. We select ~17,000 metal-poor halo stars based on their Galactic kinematics, and confirm their low metallicities ([Fe/H] < -0.5), using spectroscopy from the literature. Furthermore, we perform high-resolution spectroscopic observations using LBT/PEPSI and conduct detailed metallicity ([Fe/H]) analyses on a sample of 13 previously known halo stars that also have hot kinematics. We can use the halo star sample presented here to measure the frequency of planets and to test planet formation in extremely metal-poor environments. The result of the planet search and its implications will be presented and discussed in a companion paper by Boley et al.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا