ﻻ يوجد ملخص باللغة العربية
We present systematic results, based on density functional calculations, for the structure and energetics of $^3$He and $^4$He nanodroplets doped with alkaline earth atoms. We predict that alkaline earth atoms from Mg to Ba go to the center of $^3$He drops, whereas Ca, Sr, and Ba reside in a deep dimple at the surface of $^4$He drops, and Mg is at their center. For Ca and Sr, the structure of the dimples is shown to be very sensitive to the He-alkaline earth pair potentials used in the calculations. The $5s5pleftarrow5s^2$ transition of strontium atoms attached to helium nanodroplets of either isotope has been probed in absorption experiments. The spectra show that strontium is solvated inside $^3$He nanodroplets, supporting the calculations. In the light of our findings, we emphasize the relevance of the heavier alkaline earth atoms for analyzing mixed $^3$He-$^4$He nanodroplets, and in particular, we suggest their use to experimentally probe the $^3$He-$^4$He interface.
Mixed $^3$He-$^4$He droplets created by hydrodynamic instability of a cryogenic fluid-jet may acquire angular momentum during their passage through the nozzle of the experimental apparatus. These free-standing droplets cool down to very low temperatu
Within density functional theory, we have obtained the structure of $^4$He droplets doped with neutral calcium atoms. These results have been used, in conjunction with newly determined {it ab-initio} $^1Sigma$ and $^1Pi$ Ca-He pair potentials, to add
We develop a first principles, microscopic theory of impurity atom scattering from inhomogeneous quantum liquids such as adsorbed films, slabs, or clusters of He-4. The theory is built upon a quantitative, microscopic description of the ground state
We have experimentally studied the electronic $3pleftarrow 3s$ excitation of Na atoms attached to $^3$He droplets by means of laser-induced fluorescence as well as beam depletion spectroscopy. From the similarities of the spectra (width/shift of abso
Four light-mass nuclei are considered by an effective two-body clusterisation method; $^6$Li as $^2$H$+^4$He, $^7$Li as $^3$H$+^4$He, $^7$Be as $^3$He$+^4$He, and $^8$Be as $^4$He$+^4$He. The low-energy spectrum of each is determined from single-chan