ترغب بنشر مسار تعليمي؟ اضغط هنا

Flow-Induced Draping

354   0   0.0 ( 0 )
 نشر من قبل Christophe Eloy
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Crumpled paper or drapery patterns are everyday examples of how elastic sheets can respond to external forcing. In this Letter, we study experimentally a novel sort of forcing. We consider a circular flexible plate clamped at its center and subject to a uniform flow normal to its initial surface. As the flow velocity is gradually increased, the plate exhibits a rich variety of bending deformations: from a cylindrical taco-like shape, to isometric developable cones with azimuthal periodicity two or three, to eventually a rolled-up period-three cone. We show that this sequence of flow-induced deformations can be qualitatively predicted by a linear analysis based on the balance between elastic energy and pressure force work.

قيم البحث

اقرأ أيضاً

Surface effects become important in microfluidic setups because the surface to volume ratio becomes large. In such setups the surface roughness is not any longer small compared to the length scale of the system and the wetting properties of the wall have an important influence on the flow. However, the knowledge about the interplay of surface roughness and hydrophobic fluid-surface interaction is still very limited because these properties cannot be decoupled easily in experiments. We investigate the problem by means of lattice Boltzmann (LB) simulations of rough microchannels with a tunable fluid-wall interaction. We introduce an ``effective no-slip plane at an intermediate position between peaks and valleys of the surface and observe how the position of the wall may change due to surface roughness and hydrophobic interactions. We find that the position of the effective wall, in the case of a Gaussian distributed roughness depends linearly on the width of the distribution. Further we are able to show that roughness creates a non-linear effect on the slip length for hydrophobic boundaries.
The discontinuous shear thickening (DST) of dense suspensions is a remarkable phenomenon in which the viscosity can increase by several orders of magnitude at a critical shear rate. It has the appearance of a first order phase transition between two hypothetical states that we have recently identified as Stokes flows with lubricated or frictional contacts, respectively. Here we extend the analogy further by means of novel stress-controlled simulations and show the existence of a non-monotonic steady-state flow curve analogous to a non-monotonic equation of state. While we associate DST with an S-shaped flow curve, at volume fractions above the shear jamming transition the frictional state loses flowability and the flow curve reduces to an arch, permitting the system to flow only at small stresses. Whereas a thermodynamic transition leads to phase separation in the coexistence region, we observe a uniform shear flow all along the thickening transition. A stability analysis suggests that uniform shear may be mechanically stable for the small Reynolds numbers and system sizes in a rheometer.
Although the behavior of fluid-filled vesicles in steady flows has been extensively studied, far less is understood regarding the shape dynamics of vesicles in time-dependent oscillatory flows. Here, we investigate the nonlinear dynamics of vesicles in large amplitude oscillatory extensional (LAOE) flows using both experiments and boundary integral (BI) simulations. Our results characterize the transient membrane deformations, dynamical regimes, and stress response of vesicles in LAOE in terms of reduced volume (vesicle asphericity), capillary number ($Ca$, dimensionless flow strength), and Deborah number ($De$, dimensionless flow frequency). Results from single vesicle experiments are found to be in good agreement with BI simulations across a wide range of parameters. Our results reveal three distinct dynamical regimes based on vesicle deformation: pulsating, reorienting, and symmetrical regimes. We construct phase diagrams characterizing the transition of vesicle shapes between pulsating, reorienting, and symmetrical regimes within the two-dimensional Pipkin space defined by $De$ and $Ca$. Contrary to observations on clean Newtonian droplets, vesicles do not reach a maximum length twice per strain rate cycle in the reorienting and pulsating regimes. The distinct dynamics observed in each regime result from a competition between the flow frequency, flow time scale, and membrane deformation timescale. By calculating the particle stresslet, we quantify the nonlinear relationship between average vesicle stress and strain rate. Additionally, we present results on tubular vesicles that undergo shape transformation over several strain cycles. Broadly, our work provides new information regarding the transient dynamics of vesicles in time-dependent flows that directly informs bulk suspension rheology.
Lipid bilayer membranes have a native (albeit small) permeability for water molecules. Under an external load, provided that the bilayer structure stays intact and does not suffer from poration or rupture, a lipid membrane deforms and its water influ x/efflux is often assumed negligible in the absence of osmolarity. In this work we use boundary integral simulations to investigate the effects of water permeability on the vesicle hydrodynamics due to a mechanical load, such as the viscous stress from an external flow deforming a vesicle membrane in free space or pushing it through a confinement. Incorporating the membrane permeability into the framework of Helfrich free energy for an inextensible, elastic membrane as a model for a semipermeable vesicle, we illustrate that, in the absence of an osmotic stress gradient, the semipermeable vesicle is affected by water influx/efflux over a sufficiently long time or under a strong confinement. Our simulations quantify the conditions for water permeation to be negligible in terms of the time scales, flow strength, and confinement. These results shed light on how microfluidic confinement can be utilized to estimate membrane permeability.
With the continuing rapid development of artificial microrobots and active particles, questions of microswimmer guidance and control are becoming ever more relevant and prevalent. In both the applications and theoretical study of such microscale swim mers, control is often mediated by an engineered property of the swimmer, such as in the case of magnetically propelled microrobots. In this work, we will consider a modality of control that is applicable in more generality, effecting guidance via modulation of a background fluid flow. Here, considering a model swimmer in a commonplace flow and simple geometry, we analyse and subsequently establish the efficacy of flow-mediated microswimmer positional control, later touching upon a question of optimal control. Moving beyond idealised notions of controllability and towards considerations of practical utility, we then evaluate the robustness of this control modality to sources of variation that may be present in applications, examining in particular the effects of measurement inaccuracy and rotational noise. This exploration gives rise to a number of cautionary observations, which, overall, demonstrate the need for the careful assessment of both policy and behavioural robustness when designing control schemes for use in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا