ترغب بنشر مسار تعليمي؟ اضغط هنا

General-Purpose Computing on a Semantic Network Substrate

481   0   0.0 ( 0 )
 نشر من قبل Marko A. Rodriguez
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This article presents a model of general-purpose computing on a semantic network substrate. The concepts presented are applicable to any semantic network representation. However, due to the standards and technological infrastructure devoted to the Semantic Web effort, this article is presented from this point of view. In the proposed model of computing, the application programming interface, the run-time program, and the state of the computing virtual machine are all represented in the Resource Description Framework (RDF). The implementation of the concepts presented provides a practical computing paradigm that leverages the highly-distributed and standardized representational-layer of the Semantic Web.



قيم البحث

اقرأ أيضاً

The workflow satisfiability problem (WSP) is a well-studied problem in access control seeking allocation of authorised users to every step of the workflow, subject to workflow specification constraints. It was noticed that the number $k$ of steps is typically small compared to the number of users in the real-world instances of WSP; therefore $k$ is considered as the parameter in WSP parametrised complexity research. While WSP in general was shown to be W[1]-hard, WSP restricted to a special case of user-independent (UI) constraints is fixed-parameter tractable (FPT). However, restriction to the UI constraints might be impractical. To efficiently handle non-UI constraints, we introduce the notion of branching factor of a constraint. As long as the branching factors of the constraints are relatively small and the number of non-UI constraints is reasonable, WSP can be solved in FPT time. Extending the results from Karapetyan et al. (2019), we demonstrate that general-purpose solvers are capable of achieving FPT-like performance on WSP with arbitrary constraints when used with appropriate formulations. This enables one to tackle most of practical WSP instances. While important on its own, we hope that this result will also motivate researchers to look for FPT-aware formulations of other FPT problems.
The World Wide Web continues to evolve and serve as the infrastructure for carrying massive amounts of multimodal and multisensory observations. These observations capture various situations pertinent to peoples needs and interests along with all the ir idiosyncrasies. To support human-centered computing that empower people in making better and timely decisions, we look towards computation that is inspired by human perception and cognition. Toward this goal, we discuss computing paradigms of semantic computing, cognitive computing, and an emerging aspect of computing, which we call perceptual computing. In our view, these offer a continuum to make the most out of vast, growing, and diverse data pertinent to human needs and interests. We propose details of perceptual computing characterized by interpretation and exploration operations comparable to the interleaving of bottom and top brain processing. This article consists of two parts. First we describe semantic computing, cognitive computing, and perceptual computing to lay out distinctions while acknowledging their complementary capabilities. We then provide a conceptual overview of the newest of these three paradigms--perceptual computing. For further insights, we focus on an application scenario of asthma management converting massive, heterogeneous and multimodal (big) data into actionable information or smart data.
The abundance of open-source code, coupled with the success of recent advances in deep learning for natural language processing, has given rise to a promising new application of machine learning to source code. In this work, we explore the use of a S iamese recurrent neural network model on Python source code to create vectors which capture the semantics of code. We evaluate the quality of embeddings by identifying which problem from a programming competition the code solves. Our model significantly outperforms a bag-of-tokens embedding, providing promising results for improving code embeddings that can be used in future software engineering tasks.
We introduce a light-weight, power efficient, and general purpose convolutional neural network, ESPNetv2, for modeling visual and sequential data. Our network uses group point-wise and depth-wise dilated separable convolutions to learn representation s from a large effective receptive field with fewer FLOPs and parameters. The performance of our network is evaluated on four different tasks: (1) object classification, (2) semantic segmentation, (3) object detection, and (4) language modeling. Experiments on these tasks, including image classification on the ImageNet and language modeling on the PenTree bank dataset, demonstrate the superior performance of our method over the state-of-the-art methods. Our network outperforms ESPNet by 4-5% and has 2-4x fewer FLOPs on the PASCAL VOC and the Cityscapes dataset. Compared to YOLOv2 on the MS-COCO object detection, ESPNetv2 delivers 4.4% higher accuracy with 6x fewer FLOPs. Our experiments show that ESPNetv2 is much more power efficient than existing state-of-the-art efficient methods including ShuffleNets and MobileNets. Our code is open-source and available at https://github.com/sacmehta/ESPNetv2
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to facilitate the research and development of neural speech processing technologies by being simple, flexible, user-friendly, and well-documented. This paper describes the co re architecture designed to support several tasks of common interest, allowing users to naturally conceive, compare and share novel speech processing pipelines. SpeechBrain achieves competitive or state-of-the-art performance in a wide range of speech benchmarks. It also provides training recipes, pretrained models, and inference scripts for popular speech datasets, as well as tutorials which allow anyone with basic Python proficiency to familiarize themselves with speech technologies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا