ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational waves from galaxy encounters

40   0   0.0 ( 0 )
 نشر من قبل Vicent Quilis
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the emission of gravitational radiation produced in encounters of dark matter galactic halos. To this aim we perform a number of numerical simulations of typical galaxy mergers, computing the associated gravitational radiation waveforms as well as the energy released in the processes. Our simulations yield dimensionless gravitational wave amplitudes of the order of $10^{-13}$ and gravitational wave frequencies of the order of $10^{-16}$ Hz, when the galaxies are located at a distance of 10 Mpc. These values are of the same order as those arising in the gravitational radiation originated by strong variations of the gravitational field in the early Universe, and therefore, such gravitational waves cannot be directly observed by ground-based detectors. We discuss the feasibility of an indirect detection by means of the B-mode polarization of the Cosmic Microwave Background (CMB) induced by such waves. Our results show that the gravitational waves from encounters of dark matter galactic halos leave much too small an imprint on the CMB polarization to be actually observed with ongoing and future missions.

قيم البحث

اقرأ أيضاً

The emission of gravitational waves from a system of massive objects interacting on elliptical, hyperbolic and parabolic orbits is studied in the quadrupole approximation. Analytical expressions are then derived for the gravitational wave luminosity, the total energy output and gravitational radiation amplitude. A crude estimate of the expected number of events towards peculiar targets (i.e. globular clusters) is also given. In particular, the rate of events per year is obtained for the dense stellar cluster at the Galactic Center.
Galaxy shapes have been observed to align with external tidal fields generated by the large-scale structures of the Universe. While the main source for these tidal fields is provided by long-wavelength density perturbations, tensor perturbations also contribute with a non-vanishing amplitude at linear order. We show that parity-breaking gravitational waves produced during inflation leave a distinctive imprint in the galaxy shape power spectrum which is not hampered by any scalar-induced tidal field. We also show that a certain class of tensor non-Gaussianities produced during inflation can leave a signature in the density-weighted galaxy shape power spectrum. We estimate the possibility of observing such imprints in future galaxy surveys.
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus repr esenting an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power-spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio $r$ and tensor spectral index $n_{rm T}$. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
96 - Marc van der Sluys 2011
In this review, I give a summary of the history of our understanding of gravitational waves and how compact binaries were used to transform their status from mathematical artefact to physical reality. I also describe the types of compact (stellar) bi naries that LISA will observe as soon as it is switched on. Finally, the status and near future of LIGO, Virgo and GEO are discussed, as well as the expected detection rates for the Advanced detectors, and the accuracies with which binary parameters can be determined when BH/NS inspirals are detected.
We study gravitational waves from the first-order electroweak phase transition in the $SU(N_c)$ gauge theory with $N_f/N_cgg 1$ (large $N_f$ QCD) as a candidate for the walking technicolor, which is modeled by the $U(N_f)times U(N_f)$ linear sigma mo del with classical scale symmetry (without mass term), particularly for $N_f=8$ (one-family model). This model exhibits spontaneous breaking of the scale symmetry as well as the $U(N_f)times U(N_f)$ radiatively through the Coleman-Weinberg mechanism $grave{a}$ la Gildener-Weinberg, thus giving rise to a light pseudo dilaton (techni-dilaton) to be identified with the 125 GeV Higgs. This model possess a strong first-order electroweak phase transition due to the resultant Coleman-Weinberg type potential. We estimate the bubble nucleation that exhibits an ultra supercooling and then the signal for a stochastic gravitational wave produced via the strong first-order electroweak phase transition. We show that the amplitude can be reached to the expected sensitivities of the LISA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا